IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p3905-d1389713.html
   My bibliography  Save this article

Flexible Energy Storage for Sustainable Load Leveling in Low-Voltage Electricity Distribution Grids with Prosumers

Author

Listed:
  • Ovidiu Ivanov

    (Power Engineering Department, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

  • Mihai-Andrei Luca

    (Power Engineering Department, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

  • Bogdan-Constantin Neagu

    (Power Engineering Department, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

  • Gheorghe Grigoras

    (Power Engineering Department, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

  • Mihai Gavrilas

    (Power Engineering Department, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

Abstract

The sustainability of the energy sector is linked today with the diminishing of the reliance on fossil fuels and on the large-scale adoption of renewable generation. Medium- and low-voltage electricity distribution grids see the proliferation of microgrids that supply consumers able to generate electricity with local installations of PV panels. These consuming and generating entities, called prosumers, use the local generation for their own consumption needs and are exporting the surplus in the grid, modifying the typical steady state operation conditions. For mitigating this inconvenience, local storage equipment can be used, which also helps the prosumers to reduce their costs and preserve the sustainable operation of the distribution infrastructure. The literature shows that by optimally using storage in microgrids, the deterioration in quality and security of supply can be minimized in the presence of prosumers. This paper presents a study regarding local storage management in prosumer-enabled microgrids, seeking to find the optimal configuration of community (shared) storage systems that charge batteries overnight, during low consumption hours, providing load leveling opportunities and energy loss minimization. A study case performed on a real low-voltage electricity distribution network (LVEDN) shows the performance of the proposed optimization.

Suggested Citation

  • Ovidiu Ivanov & Mihai-Andrei Luca & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2024. "Flexible Energy Storage for Sustainable Load Leveling in Low-Voltage Electricity Distribution Grids with Prosumers," Sustainability, MDPI, vol. 16(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:3905-:d:1389713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/3905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/3905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cruz, Carlos & Alskaif, Tarek & Palomar, Esther & Bravo, Ignacio, 2023. "Prosumers integration in aggregated demand response systems," Energy Policy, Elsevier, vol. 182(C).
    2. Ovidiu Ivanov & Bogdan-Constantin Neagu & Gheorghe Grigoras & Florina Scarlatache & Mihai Gavrilas, 2021. "A Metaheuristic Algorithm for Flexible Energy Storage Management in Residential Electricity Distribution Grids," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    3. Mulleriyawage, U.G.K. & Wang, P. & Rui, T. & Zhang, K. & Hu, C. & Shen, W.X., 2023. "Prosumer-centric demand side management for minimizing electricity bills in a DC residential PV-battery system: An Australian household case study," Renewable Energy, Elsevier, vol. 205(C), pages 800-812.
    4. Motalleb, Mahdi & Reihani, Ehsan & Ghorbani, Reza, 2016. "Optimal placement and sizing of the storage supporting transmission and distribution networks," Renewable Energy, Elsevier, vol. 94(C), pages 651-659.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    2. Zixiao Ban & Fei Teng & Huifeng Zhang & Shuo Li & Geyang Xiao & Yajuan Guan, 2023. "Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    3. Kotarela, F. & Kyritsis, A. & Papanikolaou, N. & Kalogirou, S.A., 2021. "Enhanced nZEB concept incorporating a sustainable Grid Support Scheme," Renewable Energy, Elsevier, vol. 169(C), pages 714-725.
    4. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    5. Mortaz, Ebrahim & Vinel, Alexander & Dvorkin, Yury, 2019. "An optimization model for siting and sizing of vehicle-to-grid facilities in a microgrid," Applied Energy, Elsevier, vol. 242(C), pages 1649-1660.
    6. Karimi, Ali & Aminifar, Farrokh & Fereidunian, Alireza & Lesani, Hamid, 2019. "Energy storage allocation in wind integrated distribution networks: An MILP-Based approach," Renewable Energy, Elsevier, vol. 134(C), pages 1042-1055.
    7. Yadav, Monika & Pal, Nitai & Saini, Devender Kumar, 2021. "Resilient electrical distribution grid planning against seismic waves using distributed energy resources and sectionalizers: An Indian's urban grid case study," Renewable Energy, Elsevier, vol. 178(C), pages 241-259.
    8. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2019. "Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney," Energy, Elsevier, vol. 175(C), pages 505-514.
    10. Nayeem Chowdhury & Fabrizio Pilo & Giuditta Pisano, 2020. "Optimal Energy Storage System Positioning and Sizing with Robust Optimization," Energies, MDPI, vol. 13(3), pages 1-20, January.
    11. Elkholy, M.H. & Senjyu, Tomonobu & Elymany, Mahmoud & Gamil, Mahmoud M. & Talaat, M. & Masrur, Hasan & Ueda, Soichiro & Lotfy, Mohammed Elsayed, 2024. "Optimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithm," Renewable Energy, Elsevier, vol. 224(C).
    12. Lim, Kai Zhuo & Lim, Kang Hui & Wee, Xian Bin & Li, Yinan & Wang, Xiaonan, 2020. "Optimal allocation of energy storage and solar photovoltaic systems with residential demand scheduling," Applied Energy, Elsevier, vol. 269(C).
    13. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    14. Guido Carpinelli & Fabio Mottola & Christian Noce & Angela Russo & Pietro Varilone, 2018. "A New Hybrid Approach Using the Simultaneous Perturbation Stochastic Approximation Method for the Optimal Allocation of Electrical Energy Storage Systems," Energies, MDPI, vol. 11(6), pages 1-20, June.
    15. Alessandro Niccolai & Gaia Gianna Taje & Davide Mosca & Fabrizio Trombello & Emanuele Ogliari, 2022. "Industrial Demand-Side Management by Means of Differential Evolution Considering Energy Price and Labour Cost," Mathematics, MDPI, vol. 10(19), pages 1-16, October.
    16. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    17. Cai, Qiran & Qing, Jing & Xu, Qingyang & Shi, Gang & Liang, Qiao-Mei, 2024. "Techno-economic impact of electricity price mechanism and demand response on residential rooftop photovoltaic integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    19. Motalleb, Mahdi & Ghorbani, Reza, 2017. "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, Elsevier, vol. 202(C), pages 581-596.
    20. Das, Choton K. & Bass, Octavian & Mahmoud, Thair S. & Kothapalli, Ganesh & Mousavi, Navid & Habibi, Daryoush & Masoum, Mohammad A.S., 2019. "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:3905-:d:1389713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.