IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v205y2023icp800-812.html
   My bibliography  Save this article

Prosumer-centric demand side management for minimizing electricity bills in a DC residential PV-battery system: An Australian household case study

Author

Listed:
  • Mulleriyawage, U.G.K.
  • Wang, P.
  • Rui, T.
  • Zhang, K.
  • Hu, C.
  • Shen, W.X.

Abstract

Technological advancements lead to the development of a home energy management system (HEMS) to perform demand side management (DSM) in residential houses. The current study proposes a DSM strategy to minimize electricity bills in a DC residential house considering the predictions of electrical load consumption and solar photovoltaic (PV) power based on long short-term memory networks. A simulation study compares the proposed DSM strategy against four alternate scenarios, the result shows that the proposed DSM strategy has the lowest annual energy cost increment (5.81%) compared to the benchmark scenario where it is assumed to have the ideal predictions of the load consumption and solar PV power. It also shows that the predictions of the load consumption and solar PV power are essential for economically sensible DSM, however further analysis reveals that the prediction errors do not correlate with the differences in daily energy costs (or daily peak powers) resulting from the proposed DSM strategy and benchmark scenario. Finally, the proposed DSM strategy is experimentally validated on a small-scale hardware-in-the-loop test platform to demonstrate the feasibility of its practical implementation in a HEMS.

Suggested Citation

  • Mulleriyawage, U.G.K. & Wang, P. & Rui, T. & Zhang, K. & Hu, C. & Shen, W.X., 2023. "Prosumer-centric demand side management for minimizing electricity bills in a DC residential PV-battery system: An Australian household case study," Renewable Energy, Elsevier, vol. 205(C), pages 800-812.
  • Handle: RePEc:eee:renene:v:205:y:2023:i:c:p:800-812
    DOI: 10.1016/j.renene.2023.01.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123000332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marvin Barivure Sigalo & Ajit C. Pillai & Saptarshi Das & Mohammad Abusara, 2021. "An Energy Management System for the Control of Battery Storage in a Grid-Connected Microgrid Using Mixed Integer Linear Programming," Energies, MDPI, vol. 14(19), pages 1-14, September.
    2. Mulleriyawage, U.G.K. & Shen, W.X., 2020. "Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study," Renewable Energy, Elsevier, vol. 160(C), pages 852-864.
    3. Khan, Ahsan Raza & Mahmood, Anzar & Safdar, Awais & Khan, Zafar A. & Khan, Naveed Ahmed, 2016. "Load forecasting, dynamic pricing and DSM in smart grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1311-1322.
    4. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    5. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    6. Ranaweera, Iromi & Midtgård, Ole-Morten, 2016. "Optimization of operational cost for a grid-supporting PV system with battery storage," Renewable Energy, Elsevier, vol. 88(C), pages 262-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ovidiu Ivanov & Mihai-Andrei Luca & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2024. "Flexible Energy Storage for Sustainable Load Leveling in Low-Voltage Electricity Distribution Grids with Prosumers," Sustainability, MDPI, vol. 16(10), pages 1-16, May.
    2. Cai, Qiran & Qing, Jing & Xu, Qingyang & Shi, Gang & Liang, Qiao-Mei, 2024. "Techno-economic impact of electricity price mechanism and demand response on residential rooftop photovoltaic integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Elkholy, M.H. & Senjyu, Tomonobu & Elymany, Mahmoud & Gamil, Mahmoud M. & Talaat, M. & Masrur, Hasan & Ueda, Soichiro & Lotfy, Mohammed Elsayed, 2024. "Optimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithm," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Korjani, Saman & Casu, Fabio & Damiano, Alfonso & Pilloni, Virginia & Serpi, Alessandro, 2022. "An online energy management tool for sizing integrated PV-BESS systems for residential prosumers," Applied Energy, Elsevier, vol. 313(C).
    2. Wang, Chuyao & Ji, Jie & Song, Zhiying & Ke, Wei, 2024. "Performance analysis and capacity configuration of building energy system integrated with PV/T technology under different operation strategies," Energy, Elsevier, vol. 293(C).
    3. Liu, Jiangyang & Liu, Zhongbing & Wu, Yaling & Chen, Xi & Xiao, Hui & Zhang, Ling, 2022. "Impact of climate on photovoltaic battery energy storage system optimization," Renewable Energy, Elsevier, vol. 191(C), pages 625-638.
    4. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Assessment of forecasting methods on performance of photovoltaic-battery systems," Applied Energy, Elsevier, vol. 221(C), pages 358-373.
    6. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    7. Saif Jamal & Jagadeesh Pasupuleti & Nur Azzammudin Rahmat & Nadia M. L. Tan, 2022. "Energy Management System for Grid-Connected Nanogrid during COVID-19," Energies, MDPI, vol. 15(20), pages 1-20, October.
    8. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    9. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    11. Sharif Naser Makhadmeh & Mohammed Azmi Al-Betar & Mohammed A. Awadallah & Ammar Kamal Abasi & Zaid Abdi Alkareem Alyasseri & Iyad Abu Doush & Osama Ahmad Alomari & Robertas Damaševičius & Audrius Zaja, 2022. "A Modified Coronavirus Herd Immunity Optimizer for the Power Scheduling Problem," Mathematics, MDPI, vol. 10(3), pages 1-29, January.
    12. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    13. Can Ding & Yiyuan Zhou & Qingchang Ding & Kaiming Li, 2022. "Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting," Energies, MDPI, vol. 15(5), pages 1-27, February.
    14. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    15. Ranaweera, Iromi & Midtgård, Ole-Morten & Korpås, Magnus, 2017. "Distributed control scheme for residential battery energy storage units coupled with PV systems," Renewable Energy, Elsevier, vol. 113(C), pages 1099-1110.
    16. Reyes-Antonio, Claudio Antonio & Iglesias-Silva, Gustavo Arturo & Rubio-Maya, Carlos & Fuentes-Cortés, Luis Fabián, 2024. "Multi-objective design of off-grid low-enthalpy geothermal generation systems considering partial-load operations," Energy, Elsevier, vol. 294(C).
    17. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2018. "A two-level decision making approach for optimal integrated urban water and energy management," Energy, Elsevier, vol. 155(C), pages 408-425.
    18. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    19. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    20. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:800-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.