IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p345-d1310454.html
   My bibliography  Save this article

Modeling Hydrologic–Economic Interactions for Sustainable Development: A Case Study in Inner Mongolia, China

Author

Listed:
  • Hanzhang Zhou

    (Weiyang College, Tsinghua University, Beijing 100084, China)

  • Jinghao Zhang

    (Weiyang College, Tsinghua University, Beijing 100084, China)

  • Shibo Cui

    (State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China)

  • Jianshi Zhao

    (State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
    Cooperative Innovation Center for Water Safety & Hydro Science, Nanjing 210024, China)

Abstract

Water shortages are major constraints on economic development in water-deficient regions such as Inner Mongolia, China. Moreover, macroscale interactions between water resources and the regional economy remain unclear. This study addresses this problem by building a network-based hydro-economic model that integrates ecological, economic, social, and environmental data into a coherent framework. We assessed the relationship between water resources and economic performance under different water-saving and climate change scenarios. The results showed that both water-saving policies and increased water availability due to climate change can increase economic productivity. Water saving can also mitigate the negative impact of climate change-driven decreased rainfall by restoring the gross domestic product (GDP) to 97.3% of its former level. The interaction between water resources and economic productivity depends on specific factors that affect water availability. A trade-off relationship exists between economic development and water protection and was more discernible when the total GDP reached 10,250 billion CNY. When the trade-off ratio reaches 6:1, economic output decreases because of a lack of ecological water resources, even if further stress is placed on the objective. Thus, this study demonstrates the effect of water resources on economic growth and highlights the need for improved water management in water-deficient regions.

Suggested Citation

  • Hanzhang Zhou & Jinghao Zhang & Shibo Cui & Jianshi Zhao, 2023. "Modeling Hydrologic–Economic Interactions for Sustainable Development: A Case Study in Inner Mongolia, China," Sustainability, MDPI, vol. 16(1), pages 1-30, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:345-:d:1310454
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Mínguez & Jan Oosterhaven & Fernando Escobedo, 2009. "Cell‐Corrected Ras Method (Cras) For Updating Or Regionalizing An Input–Output Matrix," Journal of Regional Science, Wiley Blackwell, vol. 49(2), pages 329-348, May.
    2. Evans, Elizabeth M. & Lee, David R. & Boisvert, Richard N. & Arce, Blanca & Steenhuis, Tammo S. & Prano, Mauricio & Poats, Susan V., 2003. "Achieving efficiency and equity in irrigation management: an optimization model of the El Angel watershed, Carchi, Ecuador," Agricultural Systems, Elsevier, vol. 77(1), pages 1-22, July.
    3. Brouwer, Roy & Hofkes, Marjan, 2008. "Integrated hydro-economic modelling: Approaches, key issues and future research directions," Ecological Economics, Elsevier, vol. 66(1), pages 16-22, May.
    4. M. Babel & A. Gupta & D. Nayak, 2005. "A Model for Optimal Allocation of Water to Competing Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 693-712, December.
    5. Lu, Chengpeng & Ji, Wei & Hou, Muchen & Ma, Tianyang & Mao, Jinhuang, 2022. "Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    6. Zhao, Jing & Ni, Hongzhen & Peng, Xiujian & Li, Jifeng & Chen, Genfa & Liu, Jinhua, 2016. "Impact of water price reform on water conservation and economic growth in China," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 90-103.
    7. Daniel Crespo & Jose Albiac & Taher Kahil & Encarna Esteban & Safa Baccour, 2019. "Tradeoffs between Water Uses and Environmental Flows: A Hydroeconomic Analysis in the Ebro Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2301-2317, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teotónio, Carla & Rodríguez, Miguel & Roebeling, Peter & Fortes, Patrícia, 2020. "Water competition through the ‘water-energy’ nexus: Assessing the economic impacts of climate change in a Mediterranean context," Energy Economics, Elsevier, vol. 85(C).
    2. Roberto D. Ponce Oliva & Esteban Arias Montevechio & Francisco Fernández Jorquera & Felipe Vásquez-Lavin & Alejandra Stehr, 2021. "Water Use and Climate Stressors in a Multiuser River Basin Setting: Who Benefits from Adaptation?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 897-915, February.
    3. Xueqin Zhu & Ekko Ierland, 2012. "Economic Modelling for Water Quantity and Quality Management: A Welfare Program Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2491-2511, July.
    4. Pradeep Dogra & V. Sharda & P. Ojasvi & Shiv Prasher & R. Patel, 2014. "Compromise Programming Based Model for Augmenting Food Production with Minimum Water Allocation in a Watershed: a Case Study in the Indian Himalayas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5247-5265, December.
    5. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    6. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    7. Leakey, Roger & Kranjac-Berisavljevic, Gordana & Caron, Patrick & Craufurd, Peter & Martin, Adrienne M. & McDonald, Andy & Abedini, Walter & Afiff, Suraya & Bakurin, Ndey & Bass, Steve & Hilbeck, Ange, 2009. "Impacts of AKST on development and sustainability goals," Book Chapters,, International Water Management Institute.
    8. Britz, Wolfgang & Kuhn, Arnim, 2011. "Can Hydro-economic River Basis Models Simulate Water Shadow Prices Under Asymmetric Access?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114272, European Association of Agricultural Economists.
    9. Jincai Zhao & Yiyao Wang & Xiufeng Zhang & Qianxi Liu, 2022. "Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    10. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    11. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    12. Siyu Yue & Huaien Li & Fengmin Song, 2023. "Temporal–Spatial Variations in the Economic Value Produced by Environmental Flows in a Water Shortage Area in Northwest China," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    13. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    14. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.
    15. Buchs, Arnaud & Calvo-Mendieta, Iratxe & Petit, Olivier & Roman, Philippe, 2021. "Challenging the ecological economics of water: Social and political perspectives," Ecological Economics, Elsevier, vol. 190(C).
    16. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," Working Papers halshs-03457972, HAL.
    17. Huaibin Wei & Yao Wang & Jing Liu & Yongxiao Cao & Xinyu Zhang, 2023. "Spatiotemporal Variations of Water Eutrophication and Non-Point Source Pollution Prevention and Control in the Main Stream of the Yellow River in Henan Province from 2012 to 2021," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    18. Ijaz Ahmad & Fan Zhang, 2022. "Optimal Agricultural Water Allocation for the Sustainable Development of Surface and Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4219-4236, September.
    19. Damania, Richard & Joshi, Anupam & Russ, Jason, 2020. "India’s forests – Stepping stone or millstone for the poor?," World Development, Elsevier, vol. 125(C).
    20. R. Roozbahani & S. Schreider & B. Abbasi, 2013. "Economic Sharing of Basin Water Resources between Competing Stakeholders," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2965-2988, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:345-:d:1310454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.