IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p148-d1305882.html
   My bibliography  Save this article

Investigation of the Energy-Saving Potential of Buildings with Radiative Roofs and Low-E Windows in China

Author

Listed:
  • Lin-Rui Jia

    (School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
    Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Qing-Yun Li

    (Teaching and Learning Centre, Lingnan University, Hong Kong, China)

  • Jie Yang

    (Joinhuger Group Co. Ltd., Weifang 261000, China)

  • Jie Han

    (School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China)

  • Chi-Chung Lee

    (School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China)

  • Jian-Heng Chen

    (School of Energy and Environment, City University of Hong Kong, Hong Kong, China)

Abstract

This study develops a model for buildings with a cooling roof, walls, and low-emissivity (Low-E) windows. This model is verified through experimental analysis. The cooling demands of standard buildings and cooling buildings are compared, and the energy-saving potentials of cooling buildings are analysed. It is found that compared to standard buildings, cooling buildings exhibit superior cooling performances attributable to the application of cooling materials. Considering Hong Kong’s weather data, the indoor temperature of cooling buildings can be sub-ambient. The cooling demands of cooling buildings are decreased from 75 W/m 2 to 30 W/m 2 , indicating a 60% energy-saving potential. The nationwide cooling demand for a standard building across China is approximately 95.7 W/m 2 , whereas the nationwide summer average cooling demand for cooling buildings is 52.7 W/m 2 . Moreover, the cooling performance of a cooling roof is adversely affected by hot and humid weather conditions, resulting in lower temperature drops in southern regions compared to northern regions. However, the nationwide temperature drop across China can still be 1.6 °C, demonstrating promising cooling potentials. For the Low-E windows, the temperature can also be sub-ambient, with a nationwide average temperature drop of 1.7 °C. Therefore, the use of Low-E windows across China can also significantly contribute to energy savings for indoor cooling. Overall, the results of this study show that cooling buildings have high energy-saving potential under various climates. The proposed model can provide a reliable tool to facilitate relevant cooling evaluation by stakeholders, thereby benefiting the popularization of this technology.

Suggested Citation

  • Lin-Rui Jia & Qing-Yun Li & Jie Yang & Jie Han & Chi-Chung Lee & Jian-Heng Chen, 2023. "Investigation of the Energy-Saving Potential of Buildings with Radiative Roofs and Low-E Windows in China," Sustainability, MDPI, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:148-:d:1305882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghosh, Aritra, 2023. "Investigation of vacuum-integrated switchable polymer dispersed liquid crystal glazing for smart window application for less energy-hungry building," Energy, Elsevier, vol. 265(C).
    2. Bagiorgas, H.S. & Mihalakakou, G., 2008. "Experimental and theoretical investigation of a nocturnal radiator for space cooling," Renewable Energy, Elsevier, vol. 33(6), pages 1220-1227.
    3. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    4. Zhang, Chengyan & Ji, Jie & Wang, Chuyao & Ke, Wei & Xie, Hao & Yu, Bendong, 2022. "Experimental and numerical studies on the thermal and electrical performance of a CdTe ventilated window integrated with vacuum glazing," Energy, Elsevier, vol. 244(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    2. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    4. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    5. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    6. Amir, A. & van Hout, R., 2019. "A transient model for optimizing a hybrid nocturnal sky radiation cooling system," Renewable Energy, Elsevier, vol. 132(C), pages 370-380.
    7. Jia, Linrui & Lu, Lin & Chen, Jianheng, 2023. "Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China," Applied Energy, Elsevier, vol. 349(C).
    8. Vall, Sergi & Johannes, Kévyn & David, Damien & Castell, Albert, 2020. "A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling," Energy, Elsevier, vol. 202(C).
    9. Zhao, Bin & Hu, Mingke & Ao, Xianze & Pei, Gang, 2017. "Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China," Applied Energy, Elsevier, vol. 205(C), pages 626-634.
    10. Zhao, Bin & Hu, Mingke & Ao, Xianze & Huang, Xiaona & Ren, Xiao & Pei, Gang, 2019. "Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis," Energy, Elsevier, vol. 175(C), pages 677-686.
    11. Linlin Guo & Zhuqing Liang & Wenhao Li & Can Yang & Endong Wang, 2024. "The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis," Sustainability, MDPI, vol. 16(16), pages 1-20, August.
    12. Sergi Vall & Marc Medrano & Cristian Solé & Albert Castell, 2020. "Combined Radiative Cooling and Solar Thermal Collection: Experimental Proof of Concept," Energies, MDPI, vol. 13(4), pages 1-13, February.
    13. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Su, Weiguang & Cai, Pei & Kang, Ruigeng & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Development of temperature-responsive transmission switch film (TRTSF) using phase change material for self-adaptive radiative cooling," Applied Energy, Elsevier, vol. 322(C).
    15. Xu, Lijie & Hu, Hui & Ji, Jie & Cai, Jingyong & Dai, Leyang, 2024. "Hybrid energy saving performance of translucent CdTe photovoltaic window on small ship under sailing condition," Energy, Elsevier, vol. 295(C).
    16. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
    17. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2023. "Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings," Renewable Energy, Elsevier, vol. 202(C), pages 255-269.
    18. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    19. Zhang, Yi & Tennakoon, Thilhara & Chan, Yin Hoi & Chan, Ka Chung & Fu, Sau Chung & Tso, Chi Yan & Yu, Kin Man & Huang, Bao Ling & Yao, Shu Huai & Qiu, Hui He & Chao, Christopher Y.H., 2022. "Energy consumption modelling of a passive hybrid system for office buildings in different climates," Energy, Elsevier, vol. 239(PA).
    20. Chenyue Guo & Huajie Tang & Pengfei Wang & Qihao Xu & Haodan Pan & Xinyu Zhao & Fan Fan & Tingxian Li & Dongliang Zhao, 2024. "Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:148-:d:1305882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.