IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6698-d1124306.html
   My bibliography  Save this article

Hydrothermal Liquefaction of Pinewood Sawdust: Influence of Reaction Atmosphere

Author

Listed:
  • Haoyu Wang

    (Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada)

  • Yipei Jiang

    (Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada)

  • Evan Park

    (Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada)

  • Xue Han

    (CanmetMATERIALS, NRCan, Hamilton, ON L8P 0A5, Canada)

  • Yimin Zeng

    (CanmetMATERIALS, NRCan, Hamilton, ON L8P 0A5, Canada)

  • Chunbao Xu

    (Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada)

Abstract

Hydrothermal liquefaction (HTL) is a thermochemical process for production of biocrude oils, commonly from wet biomass under inert atmosphere (N 2 ). Influence of reaction atmosphere on HTL of pinewood sawdust was investigated in this work, at 300 °C for 60 min with the presence of KOH or H 2 SO 4 catalyst under N 2 , H 2 , and O 2 atmosphere, respectively. Very interestingly, the reaction atmosphere showed significant influence on both products distribution and properties of the biocrude oils. Generally, H 2 atmosphere enhanced biomass degradation in the presence of either KOH or H 2 SO 4 catalyst, producing the highest biocrude oil yield, lowest solid residue yield, and the best oil quality in terms of total acid number (TAN), viscosity and average molecular weights (Mn, Mw). Whereas the HTL in O 2 atmosphere showed the poorest performance in terms of yields and properties of biocrude oils. The highest quality of biocrude oil was produced using KOH catalyst in H 2 atmosphere with the maximum biocrude yield (approx. 34 wt.%) and the highest energy recovery (ER) in biocrude (ER = 73.14%). The measured properties of the oil are as follows: TAN = 40.2 mg KOH/g, viscosity = 51.2 cp, Mn = 470 g/mol, Mw = 767 g/mol. In addition, the biocrude oils produced in H 2 atmosphere contain more light oil (naphtha) fraction (23.9 wt.% with KOH and 16.5 wt.% with H 2 SO 4 ) with lower boiling points, while those generated in O 2 atmosphere have more carboxylic acid compounds.

Suggested Citation

  • Haoyu Wang & Yipei Jiang & Evan Park & Xue Han & Yimin Zeng & Chunbao Xu, 2023. "Hydrothermal Liquefaction of Pinewood Sawdust: Influence of Reaction Atmosphere," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6698-:d:1124306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alireza Rahimi & Arne Ulbrich & Joshua J. Coon & Shannon S. Stahl, 2014. "Formic-acid-induced depolymerization of oxidized lignin to aromatics," Nature, Nature, vol. 515(7526), pages 249-252, November.
    2. Chen, Wan-Ting & Zhang, Yuanhui & Zhang, Jixiang & Schideman, Lance & Yu, Guo & Zhang, Peng & Minarick, Mitchell, 2014. "Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil," Applied Energy, Elsevier, vol. 128(C), pages 209-216.
    3. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    4. Rodrigo V. Santos & Miguel A. A. Mendes & Carlos Alexandre & Manuela Ribeiro Carrott & Abel Rodrigues & Ana F. Ferreira, 2022. "Assessment of Biomass and Biochar of Maritime Pine as a Porous Medium for Water Retention in Soils," Energies, MDPI, vol. 15(16), pages 1-17, August.
    5. Singh, Rawel & Krishna, Bhavya B. & Mishra, Garima & Kumar, Jitendra & Bhaskar, Thallada, 2016. "Strategies for selection of thermo-chemical processes for the valorisation of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 226-237.
    6. Yin, Sudong & Tan, Zhongchao, 2012. "Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions," Applied Energy, Elsevier, vol. 92(C), pages 234-239.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    2. Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.
    3. Li, Bingshuo & Liu, Yixuan & Yang, Tianhua & Feng, Bixuan & Kai, Xingping & Wang, Shurong & Li, Rundong, 2021. "Aqueous phase reforming of biocrude derived from lignocellulose hydrothermal liquefaction: Conditions optimization and mechanism study," Renewable Energy, Elsevier, vol. 175(C), pages 98-107.
    4. Bai, Jing & Li, Lefei & Chen, Zhiyong & Chang, Chun & Pang, Shusheng & Li, Pan, 2023. "Study on the optimization of hydrothermal liquefaction performance of tobacco stem and the high value utilization of catalytic products," Energy, Elsevier, vol. 281(C).
    5. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    6. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    7. Guanyu Zhang & Kejie Wang & Quan Liu & Lujia Han & Xuesong Zhang, 2022. "A Comprehensive Hydrothermal Co-Liquefaction of Diverse Biowastes for Energy-Dense Biocrude Production: Synergistic and Antagonistic Effects," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    8. Mariusz Wądrzyk & Marek Plata & Kamila Zaborowska & Rafał Janus & Marek Lewandowski, 2021. "Py-GC-MS Study on Catalytic Pyrolysis of Biocrude Obtained via HTL of Fruit Pomace," Energies, MDPI, vol. 14(21), pages 1-16, November.
    9. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
    10. Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).
    11. Gundupalli, Marttin Paulraj & Bhattacharyya, Debraj, 2021. "Hydrothermal liquefaction of residues of Cocos nucifera (coir and pith) using subcritical water: Process optimization and product characterization," Energy, Elsevier, vol. 236(C).
    12. Siyuan Yin & Nianze Zhang & Chunyan Tian & Weiming Yi & Qiaoxia Yuan & Peng Fu & Yuchun Zhang & Zhiyu Li, 2021. "Effect of Accumulative Recycling of Aqueous Phase on the Properties of Hydrothermal Degradation of Dry Biomass and Bio-Crude Oil Formation," Energies, MDPI, vol. 14(2), pages 1-19, January.
    13. SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    15. Zhu, Zhe & Rosendahl, Lasse & Toor, Saqib Sohail & Yu, Donghong & Chen, Guanyi, 2015. "Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation," Applied Energy, Elsevier, vol. 137(C), pages 183-192.
    16. Zhu, Zhe & Toor, Saqib Sohail & Rosendahl, Lasse & Yu, Donghong & Chen, Guanyi, 2015. "Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw," Energy, Elsevier, vol. 80(C), pages 284-292.
    17. Yang, Jie & He, Quan (Sophia) & Niu, Haibo & Corscadden, Kenneth & Astatkie, Tess, 2018. "Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration," Applied Energy, Elsevier, vol. 228(C), pages 1618-1628.
    18. Makoto M. Watanabe & Andreas Isdepsky, 2021. "Biocrude Oil Production by Integrating Microalgae Polyculture and Wastewater Treatment: Novel Proposal on the Use of Deep Water-Depth Polyculture of Mixotrophic Microalgae," Energies, MDPI, vol. 14(21), pages 1-29, October.
    19. Leiming Hu & Jacob A. Wrubel & Carlos M. Baez-Cotto & Fry Intia & Jae Hyung Park & Arthur Jeremy Kropf & Nancy Kariuki & Zhe Huang & Ahmed Farghaly & Lynda Amichi & Prantik Saha & Ling Tao & David A. , 2023. "A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6698-:d:1124306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.