IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6180-d1115393.html
   My bibliography  Save this article

Nanocatalyst-Based Biofuel Generation: An Update, Challenges and Future Possibilities

Author

Listed:
  • Atreyi Pramanik

    (Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun 248007, Uttarakhand, India
    These authors contributed equally to this work.)

  • Anis Ahmad Chaudhary

    (Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
    These authors contributed equally to this work.)

  • Aashna Sinha

    (Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun 248007, Uttarakhand, India)

  • Kundan Kumar Chaubey

    (Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun 248007, Uttarakhand, India)

  • Mohammad Saquib Ashraf

    (Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Riyadh ELM University, Riyadh 12734, Saudi Arabia)

  • Nosiba Suliman Basher

    (Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia)

  • Hassan Ahmad Rudayni

    (Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia)

  • Deen Dayal

    (Department of Biotechnology, GLA University, Chaumuhan, Mathura 2814063, Uttar Pradesh, India)

  • Sanjay Kumar

    (Department of Life Science, Sharda School of Basic Sciences and Research, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India)

Abstract

Aggrandize industrialization and urbanization have resulted in many issues, such as increased energy demand, a plethora of waste output, and negative environmental consequences. As a result, there is excessive exploitation and over-usage of fuels and finite resources, which is paving the path for the exhaustion of fuels. Extensive use of these fossil-derived fuels has caused serious threats to the environment in terms of greenhouse gases emission leading to breathing troubles and other associated health hazards. In order to mitigate the harmful effects of fossil-derived fuels, researchers are more focused towards the production and application of bio-based fuels like bioethanol, biodiesel, biohydrogen etc. These biofuels are produced from crops and edible/non-edible materials and emit much lower pollution compared to fossil-derived fuels. Even though biofuels are effective alternatives, high operational costs with low production volume are the major limitations of this process, which the available technologies cannot handle. With increasing application of nanoparticles as catalysts in several sectors due to its unique properties such as high catalytic activity, surface to volume ratio, mechanical properties, etc., its application in biofuels production has been explored recently. The present review focuses on the application of nanocatalysts in various stages of biofuel production, different types of nanocatalyst used in the innovative era and for biofuels production and their merits and demerits. The supply of biofuels, such as feedstock is large, and with improved processing, we may be able to significantly lower our reliance on fossil fuels. The present review discusses the current updates, future possibilities, and challenges of biofuels production to help make the country self-reliant in the field of green energy.

Suggested Citation

  • Atreyi Pramanik & Anis Ahmad Chaudhary & Aashna Sinha & Kundan Kumar Chaubey & Mohammad Saquib Ashraf & Nosiba Suliman Basher & Hassan Ahmad Rudayni & Deen Dayal & Sanjay Kumar, 2023. "Nanocatalyst-Based Biofuel Generation: An Update, Challenges and Future Possibilities," Sustainability, MDPI, vol. 15(7), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6180-:d:1115393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher Schmid & Thomas Horschig & Alexandra Pfeiffer & Nora Szarka & Daniela Thrän, 2019. "Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries," Energies, MDPI, vol. 12(19), pages 1-24, October.
    2. Zulqarnain & Muhammad Ayoub & Mohd Hizami Mohd Yusoff & Muhammad Hamza Nazir & Imtisal Zahid & Mariam Ameen & Farooq Sher & Dita Floresyona & Eduardus Budi Nursanto, 2021. "A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    3. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    4. Soares Dias, Ana Paula & Bernardo, Joana & Felizardo, Pedro & Neiva Correia, Maria Joana, 2012. "Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites," Energy, Elsevier, vol. 41(1), pages 344-353.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    2. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    3. Johannes Full & Mathias Trauner & Robert Miehe & Alexander Sauer, 2021. "Carbon-Negative Hydrogen Production (HyBECCS) from Organic Waste Materials in Germany: How to Estimate Bioenergy and Greenhouse Gas Mitigation Potential," Energies, MDPI, vol. 14(22), pages 1-22, November.
    4. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    5. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.
    6. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    7. Banerjee, Madhuchanda & Dey, Binita & Talukdar, Jayanta & Chandra Kalita, Mohan, 2014. "Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle," Energy, Elsevier, vol. 69(C), pages 695-699.
    8. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    9. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    10. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Ming-Chien Hsiao & Shuhn-Shyurng Hou & Jui-Yang Kuo & Pei-Hsuan Hsieh, 2018. "Optimized Conversion of Waste Cooking Oil to Biodiesel Using Calcium Methoxide as Catalyst under Homogenizer System Conditions," Energies, MDPI, vol. 11(10), pages 1-12, October.
    12. Felipe Solferini de Carvalho & Luiz Carlos Bevilaqua dos Santos Reis & Pedro Teixeira Lacava & Fernando Henrique Mayworm de Araújo & João Andrade de Carvalho Jr., 2023. "Substitution of Natural Gas by Biomethane: Operational Aspects in Industrial Equipment," Energies, MDPI, vol. 16(2), pages 1-19, January.
    13. Rahmath Abdulla & Eryati Derman & Thivyasri K.Mathialagan & Abu Zahrim Yaser & Mohd Armi Abu Samah & Jualang Azlan Gansau & Syed Umar Faruq Syed Najmuddin, 2022. "Biodiesel Production from Waste Palm Cooking Oil Using Immobilized Candida rugosa Lipase," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    14. Joanna Kazimierowicz & Marcin Dębowski, 2022. "Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    15. Borah, Manash Jyoti & Devi, Anuchaya & Saikia, Raktim Abha & Deka, Dhanapati, 2018. "Biodiesel production from waste cooking oil catalyzed by in-situ decorated TiO2 on reduced graphene oxide nanocomposite," Energy, Elsevier, vol. 158(C), pages 881-889.
    16. Ensafi, Ali A. & Nabiyan, Afshin & Jafari-Asl, Mehdi & Dinari, Mohammad & Farrokhpour, Hossein & Rezaei, B., 2016. "Galvanic exchange at layered doubled hydroxide/N-doped graphene as an in-situ method to fabricate powerful electrocatalysts for hydrogen evolution reaction," Energy, Elsevier, vol. 116(P1), pages 1087-1096.
    17. Chipo Shonhiwa & Yolanda Mapantsela & Golden Makaka & Patrick Mukumba & Ngwarai Shambira, 2023. "Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review," Energies, MDPI, vol. 16(14), pages 1-20, July.
    18. Krzysztof Michalski & Magdalena Kośka-Wolny & Krzysztof Chmielowski & Dawid Bedla & Agnieszka Petryk & Paweł Guzdek & Katarzyna Anna Dąbek & Michał Gąsiorek & Klaudiusz Grübel & Wiktor Halecki, 2024. "Examining the Potential of Biogas: A Pathway from Post-Fermented Waste into Energy in a Wastewater Treatment Plant," Energies, MDPI, vol. 17(22), pages 1-18, November.
    19. Przemysław Seruga & Małgorzata Krzywonos & Emilia den Boer & Łukasz Niedźwiecki & Agnieszka Urbanowska & Halina Pawlak-Kruczek, 2022. "Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.
    20. Qiang Wang & Thomas Dogot & Guosheng Wu & Xianlei Huang & Changbin Yin, 2019. "Residents’ Willingness for Centralized Biogas Production in Hebei and Shandong Provinces," Sustainability, MDPI, vol. 11(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6180-:d:1115393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.