IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p140-d1012648.html
   My bibliography  Save this article

Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach

Author

Listed:
  • Przemysław Seruga

    (Department of Bioprocess Engineering, Faculty of Production Engineering, Wrocław University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland)

  • Małgorzata Krzywonos

    (Department of Process Management, Faculty of Management, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland)

  • Emilia den Boer

    (Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland)

  • Łukasz Niedźwiecki

    (Department of Boilers, Combustion and Energy Processes, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland)

  • Agnieszka Urbanowska

    (Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland)

  • Halina Pawlak-Kruczek

    (Department of Boilers, Combustion and Energy Processes, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland)

Abstract

Current and future trends in the world population lead to the continuous growth of municipal waste volumes. Only in the EU-28 approx. 86 million tons of biowaste is produced yearly. On the other hand, the recent energy crisis calls for a fast transition towards more local and renewable energy sources. Most of this stream could be recycled through anaerobic digestion (AD) to produce energy and high-quality fertilizers. This paper presents a balance of dry anaerobic digestion of municipal biowaste based on three years of system monitoring in an industrial-scale AD plant. The results indicate that the average biogas production rate of 120 Nm 3 /ton of fresh waste can be achieved. Biogas utilization in combined heat and power (CHP) units leads to an overall positive energy balance at significantly reduced CO 2 emissions. The overall CO 2 emission reduction of 25.3–26.6% was achieved, considering that biogas utilization is environmentally neutral. Moreover, biowaste conversion allows digestate production to substitute mineral fertilizers in agriculture and other applications. It is beneficial for soil protection and a broader environmental perspective.

Suggested Citation

  • Przemysław Seruga & Małgorzata Krzywonos & Emilia den Boer & Łukasz Niedźwiecki & Agnieszka Urbanowska & Halina Pawlak-Kruczek, 2022. "Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:140-:d:1012648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Taffuri & Alessandro Sciullo & Arnaud Diemer & Claudiu Eduard Nedelciu, 2021. "Integrating Circular Bioeconomy and Urban Dynamics to Define an Innovative Management of Bio-Waste: The Study Case of Turin," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    2. Anna Rolewicz-Kalińska & Krystyna Lelicińska-Serafin & Piotr Manczarski, 2020. "The Circular Economy and Organic Fraction of Municipal Solid Waste Recycling Strategies," Energies, MDPI, vol. 13(17), pages 1-20, August.
    3. Przemysław Seruga & Małgorzata Krzywonos & Anna Seruga & Łukasz Niedźwiecki & Halina Pawlak-Kruczek & Agnieszka Urbanowska, 2020. "Anaerobic Digestion Performance: Separate Collected vs. Mechanical Segregated Organic Fractions of Municipal Solid Waste as Feedstock," Energies, MDPI, vol. 13(15), pages 1-14, July.
    4. Kirchherr, Julian & Piscicelli, Laura & Bour, Ruben & Kostense-Smit, Erica & Muller, Jennifer & Huibrechtse-Truijens, Anne & Hekkert, Marko, 2018. "Barriers to the Circular Economy: Evidence From the European Union (EU)," Ecological Economics, Elsevier, vol. 150(C), pages 264-272.
    5. Vasiliki Kamperidou & Paschalina Terzopoulou, 2021. "Anaerobic Digestion of Lignocellulosic Waste Materials," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    6. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    7. Ombretta Paladino, 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    8. Przemysław Seruga & Małgorzata Krzywonos, 2021. "Separate Collected Versus Mechanical Segregated Organic Fractions in Terms of Fertilizers Suitability," Energies, MDPI, vol. 14(13), pages 1-10, July.
    9. Sean O’Connor & Ehiaze Ehimen & Suresh C. Pillai & Gary Lyons & John Bartlett, 2020. "Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms," Energies, MDPI, vol. 13(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venkata Ravi Sankar Cheela & Michele John & Wahidul K. Biswas & Brajesh Dubey, 2021. "Environmental Impact Evaluation of Current Municipal Solid Waste Treatments in India Using Life Cycle Assessment," Energies, MDPI, vol. 14(11), pages 1-23, May.
    2. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    3. Joanna Kazimierowicz & Marcin Dębowski, 2022. "Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    4. Przemysław Seruga, 2021. "The Municipal Solid Waste Management System with Anaerobic Digestion," Energies, MDPI, vol. 14(8), pages 1-9, April.
    5. Rohit Agrawal & Vishal A. Wankhede & Anil Kumar & Sunil Luthra, 2021. "Analysing the roadblocks of circular economy adoption in the automobile sector: Reducing waste and environmental perspectives," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1051-1066, February.
    6. German Arana‐Landin & Waleska Sigüenza & Beñat Landeta‐Manzano & Iker Laskurain‐Iturbe, 2024. "Circular economy: On the road to ISO 59000 family of standards," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 1977-2009, May.
    7. Maria-Athina Tsitsimpikou & Sotirios D. Kalamaras & Antonios A. Lithourgidis & Anastasios Mitsopoulos & Lars Ellegaard & Irini Angelidaki & Thomas A. Kotsopoulos, 2023. "Simulation of the Working Volume Reduction through the Bioconversion Model (BioModel) and Its Validation Using Biogas Plant Data for the Prediction of the Optimal Reactor Cleaning Period," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    8. Francesca Gennari, 2023. "The transition towards a circular economy. A framework for SMEs," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(4), pages 1423-1457, December.
    9. P. Giovani Palafox-Alcantar & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Hybrid Methodology to Study Stakeholder Cooperation in Circular Economy Waste Management of Cities," Energies, MDPI, vol. 13(7), pages 1-30, April.
    10. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    11. Julian Lauten-Weiss & Stephan Ramesohl, 2021. "The Circular Business Framework for Building, Developing and Steering Businesses in the Circular Economy," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    12. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    13. Patricia van Loon & Luk N. Van Wassenhove & Ales Mihelic, 2022. "Designing a circular business strategy: 7 years of evolution at a large washing machine manufacturer," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1030-1041, March.
    14. Abderahman Rejeb & Karim Rejeb & Suhaiza Zailani & Yasanur Kayikci & John G. Keogh, 2023. "Examining Knowledge Diffusion in the Circular Economy Domain: a Main Path Analysis," Circular Economy and Sustainability, Springer, vol. 3(1), pages 125-166, March.
    15. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability, Springer, vol. 1(1), pages 231-242, June.
    16. Vibeke Grupe Larsen & Valentina Antoniucci & Nicola Tollin & Peter Andreas Sattrup & Krister Jens & Morten Birkved & Tine Holmboe & Giuliano Marella, 2023. "A Methodological Framework to Foster Social Value Creation in Architectural Practice," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    17. Jose García‐Quevedo & Elisenda Jové‐Llopis & Ester Martínez‐Ros, 2020. "Barriers to the circular economy in European small and medium‐sized firms," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2450-2464, September.
    18. Jeff Mangers & Meysam Minoufekr & Peter Plapper & Sri Kolla, 2021. "An Innovative Strategy Allowing a Holistic System Change towards Circular Economy within Supply-Chains," Energies, MDPI, vol. 14(14), pages 1-17, July.
    19. Amit Kumar Jaglan & Venkata Ravi Sankar Cheela & Mansi Vinaik & Brajesh Dubey, 2022. "Environmental Impact Evaluation of University Integrated Waste Management System in India Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    20. Germán López Pérez & Isabel María García Sánchez & José Luis Zafra Gómez, 2024. "A systematic literature review and bibliometric analysis of eco‐innovation on financial performance: Identifying barriers and drivers," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 1321-1340, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:140-:d:1012648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.