IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6108-d1113547.html
   My bibliography  Save this article

Research on Day-Ahead Optimal Scheduling Considering Carbon Emission Allowance and Carbon Trading

Author

Listed:
  • Jiangnan Li

    (Shenzhen Power Supply Company, China Southern Power Grid, Shenzhen 518067, China)

  • Tian Mao

    (Electric Power Research Institute, China Southern Power Grid, Guangzhou 510530, China)

  • Guanglei Huang

    (Shenzhen Power Supply Company, China Southern Power Grid, Shenzhen 518067, China)

  • Wenmeng Zhao

    (Electric Power Research Institute, China Southern Power Grid, Guangzhou 510530, China)

  • Tao Wang

    (Electric Power Research Institute, China Southern Power Grid, Guangzhou 510530, China)

Abstract

In the context of the marketization of carbon trading in the power system, it is of great theoretical and practical significance to study a scientific and effective carbon emission quota allocation strategy. To solve this problem, under the current situation of large-scale access to new energy, considering the limitations of the carbon emissions from different emission subjects plus the construction of a carbon trading model among the emission subjects, a day-ahead optimal scheduling method that takes carbon emission quotas and carbon trading into account is proposed. Firstly, carbon transaction cost models of thermal power and wind power are constructed, respectively, and a carbon emission quota allocation strategy based on the entropy method is proposed to redistribute the weights of baseline emission factors for the regional power grid. Then, considering the additional carbon emissions of conventional thermal power units caused by wind power access, the carbon trading costs of different types of generation units are calculated on the basis of carbon trading price prediction. Thereafter, a day-ahead optimal scheduling model considering carbon emissions trading is constructed with the objective of minimizing the total cost of the system in the scheduling period. The model is solved as an MINLP problem based on MATLAB 2016a software utilizing CPLEX 12.4. Simulation results verify the correctness and effectiveness of the proposed method.

Suggested Citation

  • Jiangnan Li & Tian Mao & Guanglei Huang & Wenmeng Zhao & Tao Wang, 2023. "Research on Day-Ahead Optimal Scheduling Considering Carbon Emission Allowance and Carbon Trading," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6108-:d:1113547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    2. Hong, Taehoon & Koo, Choongwan & Lee, Sungug, 2014. "Benchmarks as a tool for free allocation through comparison with similar projects: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 114(C), pages 663-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    2. Boyu Zhu & Dazhi Wang, 2024. "Master–Slave Game Optimal Scheduling for Multi-Agent Integrated Energy System Based on Uncertainty and Demand Response," Sustainability, MDPI, vol. 16(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    2. Wang, Qiang & Song, Xiaoxin, 2021. "How UK farewell to coal – Insight from multi-regional input-output and logarithmic mean divisia index analysis," Energy, Elsevier, vol. 229(C).
    3. Zhang, Yang & Yan, Da & Hu, Shan & Guo, Siyue, 2019. "Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach," Energy Policy, Elsevier, vol. 134(C).
    4. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    5. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    6. Kai Li & Zhili Ma & Guozhou Zhang, 2019. "Evaluation of the Supply-Side Efficiency of China’s Real Estate Market: A Data Envelopment Analysis," Sustainability, MDPI, vol. 11(1), pages 1-18, January.
    7. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    8. Huang, Jian-Bai & Luo, Yu-Mei & Feng, Chao, 2019. "An overview of carbon dioxide emissions from China's ferrous metal industry: 1991-2030," Resources Policy, Elsevier, vol. 62(C), pages 541-549.
    9. Boqiang Lin, & Wang, Miao, 2019. "Possibilities of decoupling for China’s energy consumption from economic growth: A temporal-spatial analysis," Energy, Elsevier, vol. 185(C), pages 951-960.
    10. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    11. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    12. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    13. Grillone, Benedetto & Mor, Gerard & Danov, Stoyan & Cipriano, Jordi & Sumper, Andreas, 2021. "A data-driven methodology for enhanced measurement and verification of energy efficiency savings in commercial buildings," Applied Energy, Elsevier, vol. 301(C).
    14. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
    15. Mu, Yaqian & Evans, Samuel & Wang, Can & Cai, Wenjia, 2018. "How will sectoral coverage affect the efficiency of an emissions trading system? A CGE-based case study of China," Applied Energy, Elsevier, vol. 227(C), pages 403-414.
    16. Huang, Hai & Roland-Holst, David & Springer, Cecilia & Lin, Jiang & Cai, Wenjia & Wang, Can, 2019. "Emissions trading systems and social equity: A CGE assessment for China," Applied Energy, Elsevier, vol. 235(C), pages 1254-1265.
    17. Eskander, Shaikh M.S.U. & Nitschke, Jakob, 2021. "Energy use and CO2 emissions in the UK universities: an extended Kaya identity analysis," LSE Research Online Documents on Economics 110764, London School of Economics and Political Science, LSE Library.
    18. Prysmakova, Palina, 2020. "Generation learning framework: Applying Margaret Mead's typology to agenda-setting stage of policy diffusion," Studia z Polityki Publicznej / Public Policy Studies, Warsaw School of Economics, vol. 7(2), pages 1-25, July.
    19. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    20. Zhang, Shufan & Ma, Minda & Li, Kai & Ma, Zhili & Feng, Wei & Cai, Weiguang, 2022. "Historical carbon abatement in the commercial building operation: China versus the US," Energy Economics, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6108-:d:1113547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.