IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v134y2019ics0301421519305361.html
   My bibliography  Save this article

Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach

Author

Listed:
  • Zhang, Yang
  • Yan, Da
  • Hu, Shan
  • Guo, Siyue

Abstract

A rapid rise in China's construction scale due to urbanization has resulted in a large amount of energy consumption and carbon emission. In order to achieve carbon emission reduction and energy security, it is important to assess the energy use of and emissions from the building construction sector. This paper presents a China Building Construction Model (CBCM) based on a process-based life cycle assessment (LCA) approach and discusses the trends in energy consumption of and carbon emission regarding China's building construction sector from 2000 to 2016. In 2016, the total energy consumption of the building construction sector was 411 million tce, accounting for approximately 9% of the country's total energy consumption. The construction activities of urban residential, public, and commercial buildings have replaced rural residential buildings as the main source of energy consumption and emission. Construction scale, building structure type, and material production efficiency are the three important driving factors. A decline in China's building construction scale, promotion of new low carbon building structures, and improvement in production efficiency may reduce future energy use and carbon emissions related to the building construction sector.

Suggested Citation

  • Zhang, Yang & Yan, Da & Hu, Shan & Guo, Siyue, 2019. "Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach," Energy Policy, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305361
    DOI: 10.1016/j.enpol.2019.110949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519305361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buyle, Matthias & Braet, Johan & Audenaert, Amaryllis, 2013. "Life cycle assessment in the construction sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 379-388.
    2. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    3. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2013. "Life-cycle energy of residential buildings in China," Energy Policy, Elsevier, vol. 62(C), pages 656-664.
    4. Hong, Jingke & Shen, Geoffrey Qiping & Guo, Shan & Xue, Fan & Zheng, Wei, 2016. "Energy use embodied in China׳s construction industry: A multi-regional input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1303-1312.
    5. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2010. "The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model," Energy Policy, Elsevier, vol. 38(11), pages 6597-6603, November.
    6. Hu, Shan & Yan, Da & Cui, Ying & Guo, Siyue, 2016. "Urban residential heating in hot summer and cold winter zones of China—Status, modeling, and scenarios to 2030," Energy Policy, Elsevier, vol. 92(C), pages 158-170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Bin & Zhang, Lei & Sun, Jide & Wang, Dedong & Liu, Chunlu & Luther, Mark & Xu, Youquan, 2020. "Analysis and comparison of embodied energies in gross exports of the construction sector by means of their value-added origins," Energy, Elsevier, vol. 191(C).
    2. Xu, Meijia & Chang, Yuan & Wei, Ying & Wang, Yafei & Zhang, Pengpeng & Huang, Zhiye, 2023. "Quantification and spatial pattern of embodied CO2 footprint of prefabricated buildings in urban agglomerations: A case study of Beijing–Tianjin–Hebei, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Tian, Xu & Chen, Bin & Geng, Yong & Zhong, Shaozhuo & Gao, Cuixia & Wilson, Jeffrey & Cui, Xiaowei & Dou, Yi, 2019. "Energy footprint pathways of China," Energy, Elsevier, vol. 180(C), pages 330-340.
    4. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2014. "Shale-to-well energy use and air pollutant emissions of shale gas production in China," Applied Energy, Elsevier, vol. 125(C), pages 147-157.
    5. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    6. Jing Li & Hong Fang & Siran Fang & Zhiming Zhang & Pengyuan Zhang, 2021. "Embodied Energy Use in China’s Transportation Sector: A Multi-Regional Input–Output Analysis," IJERPH, MDPI, vol. 18(15), pages 1-18, July.
    7. Ma, Jia-Jun & Du, Gang & Xie, Bai-Chen, 2019. "CO2 emission changes of China's power generation system: Input-output subsystem analysis," Energy Policy, Elsevier, vol. 124(C), pages 1-12.
    8. Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Hong, Jingke & Shen, Qiping & Xue, Fan, 2016. "A multi-regional structural path analysis of the energy supply chain in China's construction industry," Energy Policy, Elsevier, vol. 92(C), pages 56-68.
    10. Hong, Jingke & Shen, Geoffrey Qiping & Guo, Shan & Xue, Fan & Zheng, Wei, 2016. "Energy use embodied in China׳s construction industry: A multi-regional input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1303-1312.
    11. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    12. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    13. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    14. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    15. Cui, Li & Chan, Hing Kai & Zhou, Yizhuo & Dai, Jing & Lim, Jia Jia, 2019. "Exploring critical factors of green business failure based on Grey-Decision Making Trial and Evaluation Laboratory (DEMATEL)," Journal of Business Research, Elsevier, vol. 98(C), pages 450-461.
    16. Joanna Rucińska & Anna Komerska & Jerzy Kwiatkowski, 2020. "Preliminary Study on the GWP Benchmark of Office Buildings in Poland Using the LCA Approach," Energies, MDPI, vol. 13(13), pages 1-18, June.
    17. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    18. Wang, Qiang & Song, Xiaoxin, 2021. "How UK farewell to coal – Insight from multi-regional input-output and logarithmic mean divisia index analysis," Energy, Elsevier, vol. 229(C).
    19. Karlsson, Rasmus, 2012. "Carbon lock-in, rebound effects and China at the limits of statism," Energy Policy, Elsevier, vol. 51(C), pages 939-945.
    20. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.