IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6067-d1112985.html
   My bibliography  Save this article

Machine Learning-Based Classification of Asbestos-Containing Roofs Using Airborne RGB and Thermal Imagery

Author

Listed:
  • Gordana Kaplan

    (Institute of Earth and Space Sciences, Eskisehir Technical University, Eskisehir 26555, Turkey)

  • Mateo Gašparović

    (Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, 10000 Zagreb, Croatia)

  • Onur Kaplan

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

  • Vancho Adjiski

    (Faculty of Natural and Technical Sciences, Goce Delchev University, 2000 Stip, North Macedonia)

  • Resul Comert

    (Institute of Earth and Space Sciences, Eskisehir Technical University, Eskisehir 26555, Turkey
    Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7514 Enschede, The Netherlands)

  • Mohammad Asef Mobariz

    (Institute of Graduate School, Eskisehir Technical University, Eskisehir 26555, Turkey)

Abstract

Detecting asbestos-containing roofs has been of great interest in the past few years as the substance negatively affects human health and the environment. Different remote sensing data have been successfully used for this purpose. However, RGB and thermal data have yet to be investigated. This study aims to investigate the classification of asbestos-containing roofs using RGB and airborne thermal data and state-of-the-art machine learning (ML) classification techniques. With the rapid development of ML reflected in this study, we evaluate three classifiers: Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost). We have used several image enhancement techniques to produce additional bands to improve the classification results. For feature selection, we used the Boruta technique; based on the results, we have constructed four different variations of the dataset. The results showed that the most important features for asbestos-containing roof detection were the investigated spectral indices in this study. From a ML point of view, SVM outperformed RF and XGBoost in the dataset using only the spectral indices, with a balanced accuracy of 0.93. Our results showed that RGB bands could produce as accurate results as the multispectral and hyperspectral data with the addition of spectral indices.

Suggested Citation

  • Gordana Kaplan & Mateo Gašparović & Onur Kaplan & Vancho Adjiski & Resul Comert & Mohammad Asef Mobariz, 2023. "Machine Learning-Based Classification of Asbestos-Containing Roofs Using Airborne RGB and Thermal Imagery," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6067-:d:1112985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. Gyung Doeok Han & GyuJin Jang & Jaeyoung Kim & Dong-Wook Kim & Renato Rodrogues & Seong-Hoon Kim & Hak-Jin Kim & Yong Suk Chung, 2021. "RGB images-based vegetative index for phenotyping kenaf (Hibiscus cannabinus L.)," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-15, September.
    3. Mohammad Abbasi & Sherif Mostafa & Abel Silva Vieira & Nicholas Patorniti & Rodney A. Stewart, 2022. "Mapping Roofing with Asbestos-Containing Material by Using Remote Sensing Imagery and Machine Learning-Based Image Classification: A State-of-the-Art Review," Sustainability, MDPI, vol. 14(13), pages 1-29, July.
    4. Belinda Brown & Ian Hollins & Joe Pickin & Sally Donovan, 2023. "Asbestos Stocks and Flows Legacy in Australia," Sustainability, MDPI, vol. 15(3), pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia V. Hikuwai & Nicholas Patorniti & Abel S. Vieira & Georgia Frangioudakis Khatib & Rodney A. Stewart, 2023. "Artificial Intelligence for the Detection of Asbestos Cement Roofing: An Investigation of Multi-Spectral Satellite Imagery and High-Resolution Aerial Imagery," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    2. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    3. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    4. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    5. Yvan Devaux & Lu Zhang & Andrew I. Lumley & Kanita Karaduzovic-Hadziabdic & Vincent Mooser & Simon Rousseau & Muhammad Shoaib & Venkata Satagopam & Muhamed Adilovic & Prashant Kumar Srivastava & Costa, 2024. "Development of a long noncoding RNA-based machine learning model to predict COVID-19 in-hospital mortality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    7. Conor Waldock & Bernhard Wegscheider & Dario Josi & Bárbara Borges Calegari & Jakob Brodersen & Luiz Jardim de Queiroz & Ole Seehausen, 2024. "Deconstructing the geography of human impacts on species’ natural distribution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    9. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    10. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    11. Giorgos Foutzopoulos & Nikolaos Pandis & Michail Tsagris, 2024. "Predicting Full Retirement Attainment of NBA Players," Working Papers 2403, University of Crete, Department of Economics.
    12. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Schrader, Silja & Graham, Sonia & Campbell, Rebecca & Height, Kaitlyn & Hawkes, Gina, 2024. "Grower attitudes and practices toward area-wide management of cropping weeds in Australia," Land Use Policy, Elsevier, vol. 137(C).
    14. Bram Janssens & Matthias Bogaert & Mathijs Maton, 2023. "Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents," Annals of Operations Research, Springer, vol. 325(1), pages 557-588, June.
    15. Cooray, Upul & Watt, Richard G. & Tsakos, Georgios & Heilmann, Anja & Hariyama, Masanori & Yamamoto, Takafumi & Kuruppuarachchige, Isuruni & Kondo, Katsunori & Osaka, Ken & Aida, Jun, 2021. "Importance of socioeconomic factors in predicting tooth loss among older adults in Japan: Evidence from a machine learning analysis," Social Science & Medicine, Elsevier, vol. 291(C).
    16. Simon Besnard & Nuno Carvalhais & M Altaf Arain & Andrew Black & Benjamin Brede & Nina Buchmann & Jiquan Chen & Jan G P W Clevers & Loïc P Dutrieux & Fabian Gans & Martin Herold & Martin Jung & Yoshik, 2019. "Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-22, February.
    17. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    18. Nawin Raj, 2022. "Prediction of Sea Level with Vertical Land Movement Correction Using Deep Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    19. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    20. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6067-:d:1112985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.