IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0211510.html
   My bibliography  Save this article

Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests

Author

Listed:
  • Simon Besnard
  • Nuno Carvalhais
  • M Altaf Arain
  • Andrew Black
  • Benjamin Brede
  • Nina Buchmann
  • Jiquan Chen
  • Jan G P W Clevers
  • Loïc P Dutrieux
  • Fabian Gans
  • Martin Herold
  • Martin Jung
  • Yoshiko Kosugi
  • Alexander Knohl
  • Beverly E Law
  • Eugénie Paul-Limoges
  • Annalea Lohila
  • Lutz Merbold
  • Olivier Roupsard
  • Riccardo Valentini
  • Sebastian Wolf
  • Xudong Zhang
  • Markus Reichstein

Abstract

Forests play a crucial role in the global carbon (C) cycle by storing and sequestering a substantial amount of C in the terrestrial biosphere. Due to temporal dynamics in climate and vegetation activity, there are significant regional variations in carbon dioxide (CO2) fluxes between the biosphere and atmosphere in forests that are affecting the global C cycle. Current forest CO2 flux dynamics are controlled by instantaneous climate, soil, and vegetation conditions, which carry legacy effects from disturbances and extreme climate events. Our level of understanding from the legacies of these processes on net CO2 fluxes is still limited due to their complexities and their long-term effects. Here, we combined remote sensing, climate, and eddy-covariance flux data to study net ecosystem CO2 exchange (NEE) at 185 forest sites globally. Instead of commonly used non-dynamic statistical methods, we employed a type of recurrent neural network (RNN), called Long Short-Term Memory network (LSTM) that captures information from the vegetation and climate’s temporal dynamics. The resulting data-driven model integrates interannual and seasonal variations of climate and vegetation by using Landsat and climate data at each site. The presented LSTM algorithm was able to effectively describe the overall seasonal variability (Nash-Sutcliffe efficiency, NSE = 0.66) and across-site (NSE = 0.42) variations in NEE, while it had less success in predicting specific seasonal and interannual anomalies (NSE = 0.07). This analysis demonstrated that an LSTM approach with embedded climate and vegetation memory effects outperformed a non-dynamic statistical model (i.e. Random Forest) for estimating NEE. Additionally, it is shown that the vegetation mean seasonal cycle embeds most of the information content to realistically explain the spatial and seasonal variations in NEE. These findings show the relevance of capturing memory effects from both climate and vegetation in quantifying spatio-temporal variations in forest NEE.

Suggested Citation

  • Simon Besnard & Nuno Carvalhais & M Altaf Arain & Andrew Black & Benjamin Brede & Nina Buchmann & Jiquan Chen & Jan G P W Clevers & Loïc P Dutrieux & Fabian Gans & Martin Herold & Martin Jung & Yoshik, 2019. "Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-22, February.
  • Handle: RePEc:plo:pone00:0211510
    DOI: 10.1371/journal.pone.0211510
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211510
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0211510&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0211510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Markus Reichstein & Michael Bahn & Philippe Ciais & Dorothea Frank & Miguel D. Mahecha & Sonia I. Seneviratne & Jakob Zscheischler & Christian Beer & Nina Buchmann & David C. Frank & Dario Papale & An, 2013. "Climate extremes and the carbon cycle," Nature, Nature, vol. 500(7462), pages 287-295, August.
    2. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    2. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    3. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    4. Liu, Xiaoxu & Liu, Xiaomin & Yang, Yaotian & Yu, Miao & Tian, Hailong, 2024. "The productivity anomalies and economic losses of different grassland ecosystems caused by flash drought," Agricultural Water Management, Elsevier, vol. 305(C).
    5. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    6. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    7. Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024. "Predicting full retirement attainment of NBA players," MPRA Paper 121540, University Library of Munich, Germany.
    8. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Schrader, Silja & Graham, Sonia & Campbell, Rebecca & Height, Kaitlyn & Hawkes, Gina, 2024. "Grower attitudes and practices toward area-wide management of cropping weeds in Australia," Land Use Policy, Elsevier, vol. 137(C).
    10. Zbigniew W. Kundzewicz & Adam Choryński & Janusz Olejnik & Hans J. Schellnhuber & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Climate Change Science and Policy—A Guided Tour across the Space of Attitudes and Outcomes," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    11. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    12. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    13. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    14. Abolfazl Mollalo & Kiara M. Rivera & Behzad Vahedi, 2020. "Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
    15. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    16. Yue He & Shilong Piao & Philippe Ciais & Hao Xu & Thomas Gasser, 2024. "Future land carbon removals in China consistent with national inventory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Chunyang Huang & Shaoliang Zhang, 2023. "Explainable artificial intelligence model for identifying Market Value in Professional Soccer Players," Papers 2311.04599, arXiv.org, revised Nov 2023.
    18. Faisal Alsayegh & Moh A Alkhamis & Fatima Ali & Sreeja Attur & Nicholas M Fountain-Jones & Mohammad Zubaid, 2022. "Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
    19. Basso, Franco & Cox, Tomás & Pezoa, Raúl & Maldonado, Tomás & Varas, Mauricio, 2024. "Characterizing last-mile freight transportation using mobile phone data: The case of Santiago, Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    20. Andrea Albergoni & Florentina J. Hettinga & Wim Stut & Francesco Sartor, 2020. "Factors Influencing Walking and Exercise Adherence in Healthy Older Adults Using Monitoring and Interfacing Technology: Preliminary Evidence," IJERPH, MDPI, vol. 17(17), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0211510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.