IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1767708.html
   My bibliography  Save this article

Two-Stage Hybrid Machine Learning Model for High-Frequency Intraday Bitcoin Price Prediction Based on Technical Indicators, Variational Mode Decomposition, and Support Vector Regression

Author

Listed:
  • Samuel Asante Gyamerah
  • Ning Cai

Abstract

Due to the inherent chaotic and fractal dynamics in the price series of Bitcoin, this paper proposes a two-stage Bitcoin price prediction model by combining the advantage of variational mode decomposition (VMD) and technical analysis. VMD eliminates the noise signals and stochastic volatility in the price data by decomposing the data into variational mode functions, while technical analysis uses statistical trends obtained from past trading activity and price changes to construct technical indicators. The support vector regression (SVR) accepts input from a hybrid of technical indicators (TI) and reconstructed variational mode functions (rVMF). The model is trained, validated, and tested in a period characterized by unprecedented economic turmoil due to the COVID-19 pandemic, allowing the evaluation of the model in the presence of the pandemic. The constructed hybrid model outperforms the single SVR model that uses only TI and rVMF as features. The ability to predict a minute intraday Bitcoin price has a huge propensity to reduce investors’ exposure to risk and provides better assurances of annualized returns.

Suggested Citation

  • Samuel Asante Gyamerah & Ning Cai, 2021. "Two-Stage Hybrid Machine Learning Model for High-Frequency Intraday Bitcoin Price Prediction Based on Technical Indicators, Variational Mode Decomposition, and Support Vector Regression," Complexity, Hindawi, vol. 2021, pages 1-15, December.
  • Handle: RePEc:hin:complx:1767708
    DOI: 10.1155/2021/1767708
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/1767708.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/1767708.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/1767708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    2. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    3. Guo-Feng Fan & Shan Qing & Hua Wang & Wei-Chiang Hong & Hong-Juan Li, 2013. "Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting," Energies, MDPI, vol. 6(4), pages 1-15, April.
    4. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
    5. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Li & Linda Du, 2023. "Bitcoin daily price prediction through understanding blockchain transaction pattern with machine learning methods," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-24, January.
    2. Nagula, Pavan Kumar & Alexakis, Christos, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    2. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    3. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    4. Eross, Andrea & McGroarty, Frank & Urquhart, Andrew & Wolfe, Simon, 2019. "The intraday dynamics of bitcoin," Research in International Business and Finance, Elsevier, vol. 49(C), pages 71-81.
    5. Vidal-Tomás, David & Ibañez, Ana, 2018. "Semi-strong efficiency of Bitcoin," Finance Research Letters, Elsevier, vol. 27(C), pages 259-265.
    6. George Milunovich, 2018. "Cryptocurrencies, Mainstream Asset Classes and Risk Factors: A Study of Connectedness," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 51(4), pages 551-563, December.
    7. Greg W. Hunter & Craig Kerr, 2019. "Virtual Money Illusion and the Fundamental Value of Non-Fiat Anonymous Digital Payment Methods," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(2), pages 151-164, May.
    8. Tong, Zhongwen & Chen, Zhanbo & Zhu, Chen, 2022. "Nonlinear dynamics analysis of cryptocurrency price fluctuations based on Bitcoin," Finance Research Letters, Elsevier, vol. 47(PB).
    9. Gronwald, Marc, 2019. "Is Bitcoin a Commodity? On price jumps, demand shocks, and certainty of supply," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 86-92.
    10. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    11. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2022. "Cryptocurrency returns under empirical asset pricing," International Review of Financial Analysis, Elsevier, vol. 82(C).
    12. Ma, Chaoqun & Tian, Yonggang & Hsiao, Shisong & Deng, Liurui, 2022. "Monetary policy shocks and Bitcoin prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    13. Pal, Debdatta & Mitra, Subrata K., 2019. "Hedging bitcoin with other financial assets," Finance Research Letters, Elsevier, vol. 30(C), pages 30-36.
    14. Baig, Ahmed & Blau, Benjamin M. & Sabah, Nasim, 2019. "Price clustering and sentiment in bitcoin," Finance Research Letters, Elsevier, vol. 29(C), pages 111-116.
    15. Rehman, Mobeen Ur, 2020. "Do bitcoin and precious metals do any good together? An extreme dependence and risk spillover analysis," Resources Policy, Elsevier, vol. 68(C).
    16. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    17. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    18. Khanh Hoang & Cuong C. Nguyen & Kongchheng Poch & Thang X. Nguyen, 2020. "Does Bitcoin Hedge Commodity Uncertainty?," JRFM, MDPI, vol. 13(6), pages 1-14, June.
    19. Bouraoui, Taoufik, 2020. "The drivers of Bitcoin trading volume in selected emerging countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 218-229.
    20. Luo, Di & Mishra, Tapas & Yarovaya, Larisa & Zhang, Zhuang, 2021. "Investing during a Fintech Revolution: Ambiguity and return risk in cryptocurrencies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1767708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.