IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5220-d1098099.html
   My bibliography  Save this article

The Effect of Water–Zeolite Amount–Burial Depth on Greenhouse Tomatoes with Drip Irrigation under Mulch

Author

Listed:
  • Ming Zhang

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Tao Lei

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xianghong Guo

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Jianxin Liu

    (College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xiaoli Gao

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Zhen Lei

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xiaolan Ju

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

The water–zeolite amount–burial depth coupling regulation strategy of high-quality and high-yield tomatoes was explored with drip irrigation under mulch. Greenhouse planting experiments were performed to monitor and analyze the tomato growth, physiology, yield, quality, and water use efficiency ( WUE ). The suitable amounts of the water–zeolite amount–burial depth for the tomato growth were determined through the analytic hierarchy process ( AHP ). The results showed that the effects of increasing the water of the intercellular CO 2 concentration ( Ci ), nitrate content ( NO ), vitamin content ( VC ), and soluble solids ( SS ), increasing the WUE , increasing the zeolite amount of the NO , and increasing the zeolite burial depth of the Ci and SS , were inhibited. The effects of increasing the zeolite amount of the plant height ( Kh ), stem thickness ( Kt ), total root length ( Rl ), total root volume ( Rv ), root average diameter ( Rd ), net photosynthetic rate ( Pn ), stomatal conductivity ( Gs ), organic acid ( OA ), VC , yield ( Ay ), and WUE , and of increasing the zeolite burial depth of the Kh , OA , dry matter quality ( Ad ), and WUE , were promoted first and then inhibited. The other indicators showed a positive response to increasing the water, zeolite amount, and burial depth. The influence of the water ( W ), zeolite amount ( Z ), and zeolite depth ( H ) on the Kt , Tr , Rl , and Rd , was W > H > Z , and that of the Kh , Gs , Pn , Ci , Ra , Rv , OA , VC , NO , SS , Ad , Ay , and WUE was W > Z > H . The order of weight of each index, based on the AHP , is as follows: Ay > WUE > NO > OA > Ad > Kh > Kt > VC > SS > Pn > Rv > Rd > Tr . The highest comprehensive score was W 70–90 Z 6 H 15 , and the most suitable water conditions for the tomato planting under drip irrigation were 70–90% field capacity, 6 t/hm 2 zeolite, and 15 cm depth of zeolite.

Suggested Citation

  • Ming Zhang & Tao Lei & Xianghong Guo & Jianxin Liu & Xiaoli Gao & Zhen Lei & Xiaolan Ju, 2023. "The Effect of Water–Zeolite Amount–Burial Depth on Greenhouse Tomatoes with Drip Irrigation under Mulch," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5220-:d:1098099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    2. Li, Qingming & Wei, Min & Li, Yiman & Feng, Gaili & Wang, Yaping & Li, Shuhao & Zhang, Dalong, 2019. "Effects of soil moisture on water transport, photosynthetic carbon gain and water use efficiency in tomato are influenced by evaporative demand," Agricultural Water Management, Elsevier, vol. 226(C).
    3. Sepaskhah, A.R. & Barzegar, M., 2010. "Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 98(1), pages 38-44, December.
    4. Durbach, Ian & Lahdelma, Risto & Salminen, Pekka, 2014. "The analytic hierarchy process with stochastic judgements," European Journal of Operational Research, Elsevier, vol. 238(2), pages 552-559.
    5. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Zotarelli, L. & Dukes, M.D. & Scholberg, J.M.S. & Muñoz-Carpena, R. & Icerman, J., 2009. "Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(8), pages 1247-1258, August.
    7. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    8. Wang, Feng & Kang, Shaozhong & Du, Taisheng & Li, Fusheng & Qiu, Rangjian, 2011. "Determination of comprehensive quality index for tomato and its response to different irrigation treatments," Agricultural Water Management, Elsevier, vol. 98(8), pages 1228-1238, May.
    9. Zotarelli, Lincoln & Scholberg, Johannes M. & Dukes, Michael D. & Muñoz-Carpena, Rafael & Icerman, Jason, 2009. "Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(1), pages 23-34, January.
    10. Hui Chen & Zi-Hui Shang & Huan-Jie Cai & Yan Zhu, 2019. "An Optimum Irrigation Schedule with Aeration for Greenhouse Tomato Cultivations Based on Entropy Evaluation Method," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    2. Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
    3. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    4. Katsoulas, N. & Sapounas, A. & De Zwart, F. & Dieleman, J.A. & Stanghellini, C., 2015. "Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency," Agricultural Water Management, Elsevier, vol. 156(C), pages 90-99.
    5. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    6. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    8. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    9. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    10. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.
    11. Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    12. Cardenas-Lailhacar, B. & Dukes, M.D., 2010. "Precision of soil moisture sensor irrigation controllers under field conditions," Agricultural Water Management, Elsevier, vol. 97(5), pages 666-672, May.
    13. Sakai, Emilio & Barbosa, Eduardo Augusto Agnellos & Silveira, Jane Maria de Carvalho & Pires, Regina Célia de Matos, 2015. "Coffee productivity and root systems in cultivation schemes with different population arrangements and with and without drip irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 16-23.
    14. Sharma, Sat Pal & Leskovar, Daniel I. & Crosby, Kevin M. & Volder, Astrid & Ibrahim, A.M.H., 2014. "Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 75-85.
    15. Sun, Lei & Li, Bo & Yao, Mingze & Niu, Dongshuang & Gao, Manman & Mao, Lizhen & Xu, Zhanyang & Wang, Tieliang & Wang, Jingkuan, 2023. "Optimising water and nitrogen management for greenhouse tomatoes in Northeast China using EWM−TOPSIS−AISM model," Agricultural Water Management, Elsevier, vol. 290(C).
    16. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.
    17. Wang, Lichun & Ning, Songrui & Chen, Xiaoli & Li, Youli & Guo, Wenzhong & Ben-Gal, Alon, 2021. "Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    19. Claudia Belviso & Antonio Satriani & Stella Lovelli & Alessandro Comegna & Antonio Coppola & Giovanna Dragonetti & Francesco Cavalcante & Anna Rita Rivelli, 2022. "Impact of Zeolite from Coal Fly Ash on Soil Hydrophysical Properties and Plant Growth," Agriculture, MDPI, vol. 12(3), pages 1-13, March.
    20. Li, Bo & Wim, Voogt & Shukla, Manoj Kumar & Du, Taisheng, 2021. "Drip irrigation provides a trade-off between yield and nutritional quality of tomato in the solar greenhouse," Agricultural Water Management, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5220-:d:1098099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.