IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5432-d626867.html
   My bibliography  Save this article

Assessing Local Power Generation Potentials of Photovoltaics, Engine Cogeneration, and Heat Pumps: The Case of a Major Swiss City

Author

Listed:
  • Martina Crimmann

    (RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany)

  • Reinhard Madlener

    (Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business and Economics/E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 10, 52074 Aachen, Germany
    Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTNU), Sentralbygg 1, 7491 Trondheim, Norway
    JARA-ENERGY, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany)

Abstract

In this paper, we investigate the potentials of distributed generation (DG) in a medium-sized Swiss city. We show the role of private households in the sustainable energy transition process induced by Swiss energy policy. For the analysis, we define six scenarios that enable us to study the potentials and impacts of different combinations of DG technologies in terms of costs, CO 2 emissions, and amounts and shares of DG provided by non-industrial end-users (essentially private households and the services sector). Three variants are investigated, one with real electricity costs and CO 2 emissions, one with increased electricity costs (e.g., construction of new power plants), and one with increased CO 2 emissions (e.g., due to the planned nuclear phase-out in Switzerland). We find that non-industrial entities can play an important role as prosumers. They mitigate the need for centralized generation. Within a scenario where the non-industrial energy end-users install water-water heat pumps and photovoltaics, a total reduction of the gas procurement from the grid is possible whereas the electricity demand from the grid increases by 24%. This scenario reveals higher DG electricity costs in comparison to conventional electricity supply, but the total costs of energy supply decrease due to the elimination of gas supply, and the CO 2 emissions can be reduced by 68%.

Suggested Citation

  • Martina Crimmann & Reinhard Madlener, 2021. "Assessing Local Power Generation Potentials of Photovoltaics, Engine Cogeneration, and Heat Pumps: The Case of a Major Swiss City," Energies, MDPI, vol. 14(17), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5432-:d:626867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2016. "The role of decentralized generation and storage technologies in future energy systems planning for a rural agglomeration in Switzerland," Energy Policy, Elsevier, vol. 96(C), pages 432-445.
    2. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marten Fesefeldt & Massimiliano Capezzali & Mokhtar Bozorg & Riina Karjalainen, 2023. "Impact of Heat Pump and Cogeneration Integration on Power Distribution Grids Based on Transition Scenarios for Heating in Urban Areas," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    2. Xiuge Tan, 2024. "RETRACTED ARTICLE: Bridging fiscal decentralization and circular economy for sustainable energy transition: an examination of BRICS economies in highly decentralized settings," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morstyn, Thomas & Collett, Katherine A. & Vijay, Avinash & Deakin, Matthew & Wheeler, Scot & Bhagavathy, Sivapriya M. & Fele, Filiberto & McCulloch, Malcolm D., 2020. "OPEN: An open-source platform for developing smart local energy system applications," Applied Energy, Elsevier, vol. 275(C).
    2. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    5. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Francesco Bandarin & Enrico Ciciotti & Marco Cremaschi & Giovanna Madera & Paolo Perulli & Diana Shendrikova, 2020. "Which Future for Cities after COVID-19 An international Survey," Reports, Fondazione Eni Enrico Mattei, October.
    7. Hossein Yousefi & Mohammad Hasan Ghodusinejad & Armin Ghodrati, 2022. "Multi-Criteria Future Energy System Planning and Analysis for Hot Arid Areas of Iran," Energies, MDPI, vol. 15(24), pages 1-25, December.
    8. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    9. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
    10. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    11. Lisa Göransson & Caroline Granfeldt & Ann-Brith Strömberg, 2021. "Management of Wind Power Variations in Electricity System Investment Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-30, June.
    12. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    13. Petr Hlavacek & Vladim r Skaln k, 2021. "The Implementation of Smart Energy into Transformation of the Rural Area: The Use of Public Policies for Smart Villages Development," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 1-6.
    14. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    15. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    16. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    17. Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
    18. Neumann, Fabian & Hagenmeyer, Veit & Brown, Tom, 2022. "Assessments of linear power flow and transmission loss approximations in coordinated capacity expansion problems," Applied Energy, Elsevier, vol. 314(C).
    19. Quintana-Rojo, Consolación & Callejas-Albiñana, Fernando-Evaristo & Tarancón, Miguel-Ángel & del Río, Pablo, 2020. "Assessing the feasibility of deployment policies in wind energy systems. A sensitivity analysis on a multiequational econometric framework," Energy Economics, Elsevier, vol. 86(C).
    20. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5432-:d:626867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.