IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4535-d1086643.html
   My bibliography  Save this article

Research on Biomass Waste Utilization Based on Pollution Reduction and Carbon Sequestration

Author

Listed:
  • Wanghu Sun

    (College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Yuning Sun

    (Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China)

  • Xiaochun Hong

    (College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Yuan Zhang

    (College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Chen Liu

    (College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China)

Abstract

Biomass waste in agricultural and forestry production has low value, large volume, disordered texture, high water content, and high recycling costs, disturbing its biomass waste treatment. In terms of mainstream treatment methods, incineration directly releases carbon dioxide, dust, and other pollutants, while landfills produce carbon dioxide and methane with stronger greenhouse effects. In response to this problem—taking pollution reduction, carbon sequestration, and the resource utilization of biomass waste as the purpose—a mode of in-situ, harmlessness, homogenization, reduction, automation, inorganic transformation, resource utilization, and carbon sequestration is proposed, which reduces recycling costs and improves economic efficiency and operability with carbonization as the key technique. The carbonization mechanism of biomass waste was first investigated using TGA analysis to obtain the key technical parameters of in-situ carbonization, and then biomass carbonization was divided into two stages: in-situ carbonization and factory carbonization. Thus, a process is constructed for in-situ crushing, carbonization, screening, and recycling, which promotes the recovery efficiency of biomass waste, including domestic waste. Moreover, on the basis of massive experiments, a carbon-based material was invented where, through wide applications in architecture, huge carbon can be stored in building materials; thus, a novel method of biomass waste resource utilization, carbon sequestration, and artificial carbon pool construction was established. Among them, with the convenient collection of biomass waste as the premise, the economic and reasonable carbonization process is a pivotal step to guarantee the wide application of carbon-based materials, and pollution reduction and carbon sequestration are the final purposes. This novel mode is conducive to saving resources and realizing carbon peaking and carbon neutrality goals with significant economic, ecological, and social benefits. The novelty lies in five aspects. Firstly, differing from current research on pollution reduction, carbon reduction, and carbon balance, further research on carbon sequestration was proposed. Secondly, the feasibility of reducing re-emission through carbon transfer was demonstrated. Thirdly, in-situ carbonization to recycle biomass waste was constructed. Fourthly, through carbonization, the inorganic transformation of biomass waste avoided carbon re-emission, especially methane emissions. Last but not the least, carbonization products achieved carbon sequestration and constructed an artificial carbon pool.

Suggested Citation

  • Wanghu Sun & Yuning Sun & Xiaochun Hong & Yuan Zhang & Chen Liu, 2023. "Research on Biomass Waste Utilization Based on Pollution Reduction and Carbon Sequestration," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4535-:d:1086643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Drew Shindell & Christopher J. Smith, 2019. "Climate and air-quality benefits of a realistic phase-out of fossil fuels," Nature, Nature, vol. 573(7774), pages 408-411, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    2. Meng Guo & Shukai Cai, 2022. "Impact of Green Innovation Efficiency on Carbon Peak: Carbon Neutralization under Environmental Governance Constraints," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    3. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    4. Lili Sun & Huijuan Cui & Quansheng Ge, 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries," Energies, MDPI, vol. 14(17), pages 1-21, September.
    5. Yang, Yi & Qin, Huan, 2024. "The uncertainties of the carbon peak and the temporal and regional heterogeneity of its driving factors in China," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    6. Molina-Rodea, R. & Saucedo-Velázquez, J. & Gómez-Franco, W.R. & Wong-Loya, J.A., 2024. "Operational proposal of “U” type earth heat exchanger harnessing a non-producing well for energy supply to an absorption cooling system. Approach with “La Primavera” geothermal field data," Renewable Energy, Elsevier, vol. 227(C).
    7. Zhang, Lixiao & Yang, Min & Zhang, Pengpeng & Hao, Yan & Lu, Zhongming & Shi, Zhimin, 2021. "De-coal process in urban China: What can we learn from Beijing's experience?," Energy, Elsevier, vol. 230(C).
    8. Zheng, Li & Yuan, Ling & Khan, Zeeshan & Badeeb, Ramez Abubakr & Zhang, Leilei, 2023. "How G-7 countries are paving the way for net-zero emissions through energy efficient ecosystem?," Energy Economics, Elsevier, vol. 117(C).
    9. Li, Jiaxuan & Zhu, Xun & Djilali, Ned & Yang, Yang & Ye, Dingding & Chen, Rong & Liao, Qiang, 2022. "Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    11. Michaela Roschger & Sigrid Wolf & Boštjan Genorio & Viktor Hacker, 2022. "Effect of PdNiBi Metal Content: Cost Reduction in Alkaline Direct Ethanol Fuel Cells," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    12. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Zhong, Shengyuan & Wang, Xiaoyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Wang, Yongzhen & Deng, Shuai & Zhu, Jiebei, 2021. "Deep reinforcement learning framework for dynamic pricing demand response of regenerative electric heating," Applied Energy, Elsevier, vol. 288(C).
    14. Jiang Zhu & Xiang Li & Huiming Huang & Xiangdong Yin & Jiangchun Yao & Tao Liu & Jiexuan Wu & Zhangcheng Chen, 2023. "Spatiotemporal Evolution of Carbon Emissions According to Major Function-Oriented Zones: A Case Study of Guangdong Province, China," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    15. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    16. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Lili Sun & Hang Yu & Qiang Liu & Yanzun Li & Lintao Li & Hua Dong & Caspar Daniel Adenutsi, 2022. "Identifying the Key Driving Factors of Carbon Emissions in ‘Belt and Road Initiative’ Countries," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    18. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    19. Xie, Minghua & Min, Jialin & Fang, Xingming & Sun, Chuanwang & Zhang, Zhen, 2022. "Policy selection based on China's natural gas security evaluation and comparison," Energy, Elsevier, vol. 247(C).
    20. Zhe Zhao & Xin Xuan & Fan Zhang & Ying Cai & Xiaoyu Wang, 2022. "Scenario Analysis of Renewable Energy Development and Carbon Emission in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(10), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4535-:d:1086643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.