IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v169y2022ics1364032122008164.html
   My bibliography  Save this article

Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?

Author

Listed:
  • Li, Jiaxuan
  • Zhu, Xun
  • Djilali, Ned
  • Yang, Yang
  • Ye, Dingding
  • Chen, Rong
  • Liao, Qiang

Abstract

Decarbonization of the fuel sector is crucial to achieving a zero-carbon economy. Both hydrogen and methanol are promising solutions to contribute to this goal. Herein, a comprehensive well-to-pump (WTP) energetic, environmental and economic (3E) assessment for various methanol and hydrogen production pathways is conducted based on the GREET software and data for China. Energy efficiency, levelized cost of fuel, direct and indirect emission, as well as other midpoint environmental impact indicators are compared. The gaseous and liquid hydrogen are produced from coal gasification (CGT), coal coking (CCT), natural gas reforming, and alkaline water electrolysis by renewable and grid electricity. Methanol production pathways include CGT, CCT and CO2 hydrogenation. The results indicate that most methanol produced from CO2 hydrogenation as well as green H2 yield environmental benefits but also entail energy efficiency loss. Specifically, compared to conventional methanol, hydrogen and green hydrogen, the environmental benefits increase by up to 101%, 103% and 104%, whereas the energy efficiency drops by up to 71%, 75% and 85%, respectively. With current technology, the levelized costs of methanol production can be between 12% and 75% lower than most hydrogen production pathways. Compared to hydrogen supply chain, the levelized cost of methanol supply is primarily concentrated in the production stage (67%∼93%). In general, although hydrogen can be an important carbon emission free fuel in the long run, methanol produced from CO2 hydrogenation assisted by renewable sources is the most feasible near-term pathway in China, offering an easier to market carbon neutral fuel source.

Suggested Citation

  • Li, Jiaxuan & Zhu, Xun & Djilali, Ned & Yang, Yang & Ye, Dingding & Chen, Rong & Liao, Qiang, 2022. "Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:rensus:v:169:y:2022:i:c:s1364032122008164
    DOI: 10.1016/j.rser.2022.112935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122008164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ou, Xunmin & Yan, Xiaoyu & Zhang, Xiliang & Liu, Zhen, 2012. "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China," Applied Energy, Elsevier, vol. 90(1), pages 218-224.
    2. Li, Xin & Ou, Xunmin & Zhang, Xu & Zhang, Qian & Zhang, Xiliang, 2013. "Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010," Energy, Elsevier, vol. 50(C), pages 15-23.
    3. Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.
    4. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
    5. Li, Mengyu & Zhang, Xiongwen & Li, Guojun, 2016. "A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis," Energy, Elsevier, vol. 94(C), pages 693-704.
    6. Yisong Chen & Xu Hu & Jiahui Liu, 2019. "Life Cycle Assessment of Fuel Cell Vehicles Considering the Detailed Vehicle Components: Comparison and Scenario Analysis in China Based on Different Hydrogen Production Schemes," Energies, MDPI, vol. 12(15), pages 1-24, August.
    7. Ben G. Li & Yibei Liu, 2018. "The Production Life Cycle," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(4), pages 1139-1170, October.
    8. Lee, Boreum & Lee, Hyunjun & Lim, Dongjun & Brigljević, Boris & Cho, Wonchul & Cho, Hyun-Seok & Kim, Chang-Hee & Lim, Hankwon, 2020. "Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?," Applied Energy, Elsevier, vol. 279(C).
    9. Harris, Kylee & Grim, R. Gary & Huang, Zhe & Tao, Ling, 2021. "A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: Opportunities and barriers to commercialization," Applied Energy, Elsevier, vol. 303(C).
    10. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    11. Christopher J. Smith & Piers M. Forster & Myles Allen & Jan Fuglestvedt & Richard J. Millar & Joeri Rogelj & Kirsten Zickfeld, 2019. "Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    12. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "The consumption, production and transportation of methanol in China: A review," Energy Policy, Elsevier, vol. 63(C), pages 130-138.
    13. Drew Shindell & Christopher J. Smith, 2019. "Climate and air-quality benefits of a realistic phase-out of fossil fuels," Nature, Nature, vol. 573(7774), pages 408-411, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    3. Wen, Du & Aziz, Muhammad, 2024. "Perspective of staged hydrogen economy in Japan: A case study based on the data-driven method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    2. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Tabibian, Seyed Shayan & Sharifzadeh, Mahdi, 2023. "Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Chen, Leyuan & Wang, Yao & Jiang, Yancui & Zhang, Caizhi & Liao, Quan & Li, Jun & Wu, Jihao & Gao, Xin, 2024. "Life cycle assessment of liquid hydrogen fuel for vehicles with different production routes in China," Energy, Elsevier, vol. 299(C).
    5. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Chengjiang Li & Tingwen Jia & Shiyuan Wang & Xiaolin Wang & Michael Negnevitsky & Honglei Wang & Yujie Hu & Weibin Xu & Na Zhou & Gang Zhao, 2023. "Methanol Vehicles in China: A Review from a Policy Perspective," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    7. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    8. Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Luo, Xiaoyu & Chen, Ying & Wu, Shuying & Chen, Wei, 2024. "N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature," Energy, Elsevier, vol. 286(C).
    9. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    10. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    11. Iqbal, Mehroze & Laurent, Julien & Benmouna, Amel & Becherif, Mohamed & Ramadan, Haitham S. & Claude, Frederic, 2022. "Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 254(PA).
    12. Zhang, Zhiqing & Zhong, Weihuang & Mao, Chengfang & Xu, Yuejiang & Lu, Kai & Ye, Yanshuai & Guan, Wei & Pan, Mingzhang & Tan, Dongli, 2024. "Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF," Energy, Elsevier, vol. 294(C).
    13. Xu, Wanrong & Kou, Chuanfu & E, Jiaqiang & Feng, Changling & Tan, Yan, 2024. "Effect analysis on the flow uniformity and pressure drop characteristics of the rotary diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 288(C).
    14. Wu, Zhicong & Zhang, Ziyue & Xu, Gang & Ge, Shiyu & Xue, Xiaojun & Chen, Heng, 2024. "Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 300(C).
    15. Guan, Wei & Gu, Jinkai & Pan, Xiubin & Pan, Mingzhang & Wang, Xinyan & Zhao, Hua & Tan, Dongli & Fu, Changcheng & Pedrozo, Vinícius B. & Zhang, Zhiqing, 2024. "Improvement of the light-load combustion control strategy for a heavy-duty diesel engine fueled with diesel/methonal by RSM-NSGA III," Energy, Elsevier, vol. 297(C).
    16. Renjie Wang & Yuanyuan Song & Honglei Xu & Yue Li & Jie Liu, 2022. "Life Cycle Assessment of Energy Consumption and CO 2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
    17. E, Shengxin & Cui, Yaxin & Liu, Yuxian & Yin, Huichun, 2023. "Effects of the different phase change materials on heat dissipation performances of the ternary polymer Li-ion battery pack in hot climate," Energy, Elsevier, vol. 282(C).
    18. Tan, Yan & Kou, Chuanfu & E, Jiaqiang & Feng, Changlin & Han, Dandan, 2024. "Effect of different exhaust parameters on conversion efficiency enhancement of a Pd–Rh three-way catalytic converter for heavy-duty natural gas engines," Energy, Elsevier, vol. 292(C).
    19. E, Jiaqiang & Qin, Yisheng & Zhang, Bin & Yin, Huichun & Tan, Yan, 2023. "Effects of heating film and phase change material on preheating performance of the lithium-ion battery pack with large capacity under low temperature environment," Energy, Elsevier, vol. 284(C).
    20. Ma, Wenyao & Gao, Sheng & Liu, Hui & Li, Dongmei, 2024. "The improvements of a diesel engine fueled with renewable and sustainable diesel/n-butanol/polyoxymethylene dimethyl ethers blended fuels at high altitudes," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:169:y:2022:i:c:s1364032122008164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.