IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4245-d1081992.html
   My bibliography  Save this article

Using Machine Learning to Predict the Performance of a Cross-Flow Ultrafiltration Membrane in Xylose Reductase Separation

Author

Listed:
  • Reza Salehi

    (Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand)

  • Santhana Krishnan

    (Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand)

  • Mohd Nasrullah

    (Faculty of Civil Engineering Technology, University of Malaysia Pahang, Lebuhraya Tun Razak, Gambang 26300, Malaysia)

  • Sumate Chaiprapat

    (Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand
    PSU Energy Systems Research Institute, Research and Development Office, Prince of Songkla University, Songkhla 90110, Thailand)

Abstract

This study provides a new perspective for xylose reductase enzyme separation from the reaction mixtures—obtained in the production of xylitol—by means of machine learning technique for large-scale production. Two types of machine learning models, including an adaptive neuro-fuzzy inference system based on grid partitioning of the input space and a boosted regression tree were developed, validated, and tested. The models’ inputs were cross-flow velocity, transmembrane pressure, and filtration time, whereas the membrane permeability (called membrane flux) and xylitol concentration were considered as the outputs. According to the results, the boosted regression tree model demonstrated the highest predictive performance in forecasting the membrane flux and the amount of xylitol produced with a coefficient of determination of 0.994 and 0.967, respectively, against 0.985 and 0.946 for the grid partitioning-based adaptive neuro-fuzzy inference system, 0.865 and 0.820 for the best nonlinear regression picked from among 143 different equations, and 0.815 and 0.752 for the linear regression. The boosted regression tree modeling approach demonstrated a superior capability of predictive accuracy of the critical separation performances in the enzymatic-based cross-flow ultrafiltration membrane for xylitol synthesis.

Suggested Citation

  • Reza Salehi & Santhana Krishnan & Mohd Nasrullah & Sumate Chaiprapat, 2023. "Using Machine Learning to Predict the Performance of a Cross-Flow Ultrafiltration Membrane in Xylose Reductase Separation," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4245-:d:1081992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majid Dehghani & Hossein Riahi-Madvar & Farhad Hooshyaripor & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Kwok-wing Chau, 2019. "Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 12(2), pages 1-20, January.
    2. Sandra Ceballos-Santos & Jaime González-Pardo & David C. Carslaw & Ana Santurtún & Miguel Santibáñez & Ignacio Fernández-Olmo, 2021. "Meteorological Normalisation Using Boosted Regression Trees to Estimate the Impact of COVID-19 Restrictions on Air Quality Levels," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    3. Al-qaness, Mohammed A.A. & Ewees, Ahmed A. & Fan, Hong & Abualigah, Laith & Elaziz, Mohamed Abd, 2022. "Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting," Applied Energy, Elsevier, vol. 314(C).
    4. A. Bassam & O. May Tzuc & M. Escalante Soberanis & L. J. Ricalde & B. Cruz, 2017. "Temperature Estimation for Photovoltaic Array Using an Adaptive Neuro Fuzzy Inference System," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    5. Ted G. Eschenbach, 1992. "Spiderplots versus Tornado Diagrams for Sensitivity Analysis," Interfaces, INFORMS, vol. 22(6), pages 40-46, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Ahmed A. Ewees & Fatma H. Ismail & Rania M. Ghoniem & Marwa A. Gaheen, 2022. "Enhanced Marine Predators Algorithm for Solving Global Optimization and Feature Selection Problems," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    4. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    5. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    6. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    7. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    9. van Groenendaal, Willem J. H., 1998. "Estimating NPV variability for deterministic models," European Journal of Operational Research, Elsevier, vol. 107(1), pages 202-213, May.
    10. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Namje Park, 2020. "Machine Learning Based Hybrid System for Imputation and Efficient Energy Demand Forecasting," Energies, MDPI, vol. 13(11), pages 1-23, May.
    11. Jian Zhu & Zhiyuan Zhao & Xiaoran Zheng & Zhao An & Qingwu Guo & Zhikai Li & Jianling Sun & Yuanjun Guo, 2023. "Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer," Energies, MDPI, vol. 16(22), pages 1-15, November.
    12. Marcos Geraldo Gomes & Victor Hugo Carlquist da Silva & Luiz Fernando Rodrigues Pinto & Plinio Centoamore & Salvatore Digiesi & Francesco Facchini & Geraldo Cardoso de Oliveira Neto, 2020. "Economic, Environmental and Social Gains of the Implementation of Artificial Intelligence at Dam Operations toward Industry 4.0 Principles," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    13. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    14. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    15. Julio Barzola-Monteses & Mónica Mite-León & Mayken Espinoza-Andaluz & Juan Gómez-Romero & Waldo Fajardo, 2019. "Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    16. Oyarzun, Ricardo & Arumi, Jose & Salgado, Luis & Marino, Miguel, 2007. "Sensitivity analysis and field testing of the RISK-N model in the Central Valley of Chile," Agricultural Water Management, Elsevier, vol. 87(3), pages 251-260, February.
    17. Shahaboddin Shamshirband & Masoud Hadipoor & Alireza Baghban & Amir Mosavi & Jozsef Bukor & Annamária R. Várkonyi-Kóczy, 2019. "Developing an ANFIS-PSO Model to Predict Mercury Emissions in Combustion Flue Gases," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    18. Lane, David & Husemann, Elke & Holland, Darren & Khaled, Abdul, 2019. "Understanding foodborne transmission mechanisms for Norovirus: A study for the UK's Food Standards Agency," European Journal of Operational Research, Elsevier, vol. 275(2), pages 721-736.
    19. Wang, Yun & Chen, Tuo & Zou, Runmin & Song, Dongran & Zhang, Fan & Zhang, Lingjun, 2022. "Ensemble probabilistic wind power forecasting with multi-scale features," Renewable Energy, Elsevier, vol. 201(P1), pages 734-751.
    20. Mario Lovrić & Mario Antunović & Iva Šunić & Matej Vuković & Simonas Kecorius & Mark Kröll & Ivan Bešlić & Ranka Godec & Gordana Pehnec & Bernhard C. Geiger & Stuart K. Grange & Iva Šimić, 2022. "Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia," IJERPH, MDPI, vol. 19(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4245-:d:1081992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.