IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2532-d1052498.html
   My bibliography  Save this article

Quantitative Evaluation of Ecosystem Services of Urban Street Trees: A Case Study of Shengjing Historical and Cultural Block in Shenyang, China

Author

Listed:
  • Qingyu Sui

    (Agricultural College, Yanbian University, Yanji 133002, China)

  • Hongzuo Jia

    (Agricultural College, Yanbian University, Yanji 133002, China)

  • Meiyue Zhao

    (Forestry College, Shenyang Agricultural University, Shenyang 110161, China)

  • Yan Zhou

    (Forestry College, Shenyang Agricultural University, Shenyang 110161, China
    Key Laboratory of Northern Landscape Plants and Regional Landscape (Liaoning Province), Shenyang 110161, China)

  • Lei Fan

    (Forestry College, Shenyang Agricultural University, Shenyang 110161, China
    Key Laboratory of Northern Landscape Plants and Regional Landscape (Liaoning Province), Shenyang 110161, China)

Abstract

Urban street trees are of great significance to the sustainable development of human settlements, and are key factors to enhance the service value of the urban environmental ecosystem. In this regard, it is necessary to improve and balance the benefit distribution of urban street trees for promoting the environmental quality of cities. In order to make clear the urban street tree benefits in a city, this paper presents the study on the ecosystem services from street trees in Shengjing Historical and Cultural Block (SHCB), Shenyang, China. By conducting a field survey on 1968 street trees and using the i-Tree model and the ENVI-met model to quantify the original data, this paper evaluated the ecosystem services distribution of eight streets and nine zones in the SHCB. The results showed that the co-creation annual ecological benefit and annual thermal comfort benefit of the street trees of SHCB were 163,965.62 and 233,533.48 dollars, respectively, totaling 397,499.10 dollars. It is obvious that the thermal comfort benefit is higher than the ecological benefit. Meanwhile, urban streets with high ecological benefit may not necessarily produce high thermal comfort benefit. Therefore, on the basis of ecological benefit analysis, the ecosystem services can be reflected more accurately by superimposing the thermal comfort benefit. The quantitative assessment system obtained in this study can provide a reference for future block planning and urban street tree allocation of SHCB and other regions in similar areas.

Suggested Citation

  • Qingyu Sui & Hongzuo Jia & Meiyue Zhao & Yan Zhou & Lei Fan, 2023. "Quantitative Evaluation of Ecosystem Services of Urban Street Trees: A Case Study of Shengjing Historical and Cultural Block in Shenyang, China," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2532-:d:1052498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    2. Peihao Song & Gunwoo Kim & Audrey Mayer & Ruizhen He & Guohang Tian, 2020. "Assessing the Ecosystem Services of Various Types of Urban Green Spaces Based on i-Tree Eco," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Styliani Chatziathanasiou & Kyriaki Kitikidou & Elias Milios, 2024. "Crown Width–Tree Height Models for Magnolia grandiflora , Prunus cerasifera , and Acer negundo Growing in Cities in Northeastern Greece," Land, MDPI, vol. 13(10), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    2. Guangxi Shen & Zipeng Song & Jiacong Xu & Lishuang Zou & Lijin Huang & Yingnan Li, 2023. "Are Ecosystem Services Provided by Street Trees at Parcel Level Worthy of Attention? A Case Study of a Campus in Zhenjiang, China," IJERPH, MDPI, vol. 20(1), pages 1-16, January.
    3. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    4. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    5. Sundus Shareef, 2022. "The Influence of Greenery and Landscape Design on Solar Radiation and UHI Mitigation: A Case Study of a Boulevard in a Hot Climate," World, MDPI, vol. 3(2), pages 1-31, March.
    6. Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Sara Ojeda-Benítez & Samantha E. Cruz-Sotelo, 2019. "Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 11(7), pages 1-11, April.
    7. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    8. Akihiro Otsuka, 2018. "Regional Determinants of Energy Efficiency: Residential Energy Demand in Japan," Energies, MDPI, vol. 11(6), pages 1-14, June.
    9. Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.
    10. Wojciech Durlak & Margot Dudkiewicz & Małgorzata Milecka, 2022. "A Combined Methods of Senile Trees Inventory in Sustainable Urban Greenery Management on the Example of the City of Sandomierz (Poland)," Land, MDPI, vol. 11(11), pages 1-29, October.
    11. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    12. Xu, Xiaoyu & González, Jorge E. & Shen, Shuanghe & Miao, Shiguang & Dou, Junxia, 2018. "Impacts of urbanization and air pollution on building energy demands — Beijing case study," Applied Energy, Elsevier, vol. 225(C), pages 98-109.
    13. Jaime Aguilar Rojas & Amalesh Dhar & M. Anne Naeth, 2022. "Urban Green Spaces Restoration Using Native Forbs, Site Preparation and Soil Amendments—A Case Study," Land, MDPI, vol. 11(4), pages 1-15, March.
    14. Min Liu & Xiaoma Li & Ding Song & Hui Zhai, 2021. "Evaluation and Monitoring of Urban Public Greenspace Planning Using Landscape Metrics in Kunming," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    15. Sophia Kappou & Manolis Souliotis & Spiros Papaefthimiou & Giorgos Panaras & John A. Paravantis & Evanthie Michalena & Jeremy Maxwell Hills & Andreas P. Vouros & Aikaterini Ntymenou & Giouli Mihalakak, 2022. "Cool Pavements: State of the Art and New Technologies," Sustainability, MDPI, vol. 14(9), pages 1-32, April.
    16. Liu, Yang & Kwan, Mei-Po & Wong, Man Sing & Yu, Changda, 2023. "Current methods for evaluating people's exposure to green space: A scoping review," Social Science & Medicine, Elsevier, vol. 338(C).
    17. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    18. Richa Sharma & Lolita Pradhan & Maya Kumari & Prodyut Bhattacharya & Varun Narayan Mishra & Deepak Kumar, 2024. "Spatio-Temporal Assessment of Urban Carbon Storage and Its Dynamics Using InVEST Model," Land, MDPI, vol. 13(9), pages 1-17, August.
    19. Mahalik , Mantu Kumar & Le, Thai-Ha & Le, Ha-Chi & Subhadra , Sushree, 2022. "Does Higher Education Level Matter for The Reduction of Non-Renewable Energy Demand? Insights from the World’s Largest Greenhouse Gas Emitters," Journal of Economic Development, The Economic Research Institute, Chung-Ang University, vol. 47(3), pages 29-56, September.
    20. Yujiro Hirano & Tomohiko Ihara & Kei Gomi & Tsuyoshi Fujita, 2019. "Simulation-Based Evaluation of the Effect of Green Roofs in Office Building Districts on Mitigating the Urban Heat Island Effect and Reducing CO 2 Emissions," Sustainability, MDPI, vol. 11(7), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2532-:d:1052498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.