IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2105-d1044171.html
   My bibliography  Save this article

Prediction of Electric Vehicles Charging Demand: A Transformer-Based Deep Learning Approach

Author

Listed:
  • Sahar Koohfar

    (Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA)

  • Wubeshet Woldemariam

    (Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA)

  • Amit Kumar

    (Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA)

Abstract

Electric vehicles have been gaining attention as a cleaner means of transportation that is low-carbon and environmentally friendly and can reduce greenhouse gas emissions and air pollution. Despite EVs’ many advantages, widespread adoption will negatively affect the electric grid due to their random and volatile nature. Consequently, predicting the charging demand for electric vehicles is becoming a priority to maintain a steady supply of electric energy. Time series methodologies are applied to predict the charging demand: traditional and deep learning. RNN, LSTM, and transformers represent deep learning approaches, while ARIMA and SARIMA are traditional techniques. This research represents one of the first attempts to use the Transformer model for predicting EV charging demand. Predictions for 3-time steps are considered: 7 days, 30 days, and 90 days to address both short-term and long-term forecasting of EV charging load. RMSE and MAE were used to compare the model’s performance. According to the results, the Transformer outperforms the other mentioned models in terms of short-term and long-term predictions, demonstrating its ability to address time series problems, especially EV charging predictions. The proposed Transformers framework and the obtained results can be used to manage electricity grids efficiently and smoothly.

Suggested Citation

  • Sahar Koohfar & Wubeshet Woldemariam & Amit Kumar, 2023. "Prediction of Electric Vehicles Charging Demand: A Transformer-Based Deep Learning Approach," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2105-:d:1044171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juncheng Zhu & Zhile Yang & Monjur Mourshed & Yuanjun Guo & Yimin Zhou & Yan Chang & Yanjie Wei & Shengzhong Feng, 2019. "Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches," Energies, MDPI, vol. 12(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songjiang Li & Wenxin Zhang & Peng Wang, 2023. "TS2ARCformer: A Multi-Dimensional Time Series Forecasting Framework for Short-Term Load Prediction," Energies, MDPI, vol. 16(15), pages 1-22, August.
    2. Raiden Skala & Mohamed Ahmed T. A. Elgalhud & Katarina Grolinger & Syed Mir, 2023. "Interval Load Forecasting for Individual Households in the Presence of Electric Vehicle Charging," Energies, MDPI, vol. 16(10), pages 1-21, May.
    3. Te Li & Mengze Zhang & Yan Zhou, 2024. "LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting," Papers 2410.15286, arXiv.org.
    4. Cao, Jianing & Han, Yuhang & Pan, Nan & Zhang, Jingcheng & Yang, Junwei, 2024. "A data-driven approach to urban charging facility expansion based on bi-level optimization: A case study in a Chinese city," Energy, Elsevier, vol. 300(C).
    5. Sahar Koohfar & Wubeshet Woldemariam & Amit Kumar, 2023. "Performance Comparison of Deep Learning Approaches in Predicting EV Charging Demand," Sustainability, MDPI, vol. 15(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    2. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    3. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    4. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
    5. Gangjun Gong & Xiaonan An & Nawaraj Kumar Mahato & Shuyan Sun & Si Chen & Yafeng Wen, 2019. "Research on Short-Term Load Prediction Based on Seq2seq Model," Energies, MDPI, vol. 12(16), pages 1-18, August.
    6. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    7. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2020. "Minutely Active Power Forecasting Models Using Neural Networks," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    8. Prince Aduama & Zhibo Zhang & Ameena S. Al-Sumaiti, 2023. "Multi-Feature Data Fusion-Based Load Forecasting of Electric Vehicle Charging Stations Using a Deep Learning Model," Energies, MDPI, vol. 16(3), pages 1-14, January.
    9. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    10. Munseok Chang & Sungwoo Bae & Gilhwan Cha & Jaehyun Yoo, 2021. "Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    11. Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    12. Sameh Mahjoub & Sami Labdai & Larbi Chrifi-Alaoui & Bruno Marhic & Laurent Delahoche, 2023. "Short-Term Occupancy Forecasting for a Smart Home Using Optimized Weight Updates Based on GA and PSO Algorithms for an LSTM Network," Energies, MDPI, vol. 16(4), pages 1-18, February.
    13. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    14. Minfeng Wu & Wen Chen, 2022. "Forecast of Electric Vehicle Sales in the World and China Based on PCA-GRNN," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    15. Karmaker, Ashish Kumar & Prakash, Krishneel & Siddique, Md Nazrul Islam & Hossain, Md Alamgir & Pota, Hemanshu, 2024. "Electric vehicle hosting capacity analysis: Challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Jamali Jahromi, Ali & Mohammadi, Mohammad & Afrasiabi, Shahabodin & Afrasiabi, Mousa & Aghaei, Jamshid, 2022. "Probability density function forecasting of residential electric vehicles charging profile," Applied Energy, Elsevier, vol. 323(C).
    17. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
    18. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
    19. Yunsun Kim & Sahm Kim, 2021. "Forecasting Charging Demand of Electric Vehicles Using Time-Series Models," Energies, MDPI, vol. 14(5), pages 1-16, March.
    20. Eduardo Caro & Jesús Juan, 2020. "Short-Term Load Forecasting for Spanish Insular Electric Systems," Energies, MDPI, vol. 13(14), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2105-:d:1044171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.