IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1309-d1047513.html
   My bibliography  Save this article

Multi-Feature Data Fusion-Based Load Forecasting of Electric Vehicle Charging Stations Using a Deep Learning Model

Author

Listed:
  • Prince Aduama

    (Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Shakhbout Bin Sultan St Zone 1, Abu Dhabi 127788, United Arab Emirates)

  • Zhibo Zhang

    (Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Shakhbout Bin Sultan St Zone 1, Abu Dhabi 127788, United Arab Emirates)

  • Ameena S. Al-Sumaiti

    (Advanced Power and Energy Center, Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates)

Abstract

We propose a forecasting technique based on multi-feature data fusion to enhance the accuracy of an electric vehicle (EV) charging station load forecasting deep-learning model. The proposed method uses multi-feature inputs based on observations of historical weather (wind speed, temperature, and humidity) data as multiple inputs to a Long Short-Term Memory (LSTM) model to achieve a robust prediction of charging loads. Weather conditions are significant influencers of the behavior of EV drivers and their driving patterns. These behavioral and driving patterns affect the charging patterns of the drivers. Rather than one prediction (step, model, or variables) made by conventional LSTM models, three charging load (energy demand) predictions of EVs were made depending on different multi-feature inputs. Data fusion was used to combine and optimize the different charging load prediction results. The performance of the final implemented model was evaluated by the mean absolute prediction error of the forecast. The implemented model had a prediction error of 3.29%. This prediction error was lower than initial prediction results by the LSTM model. The numerical results indicate an improvement in the performance of the EV load forecast, indicating that the proposed model could be used to optimize and improve EV load forecasts for electric vehicle charging stations to meet the energy requirements of EVs.

Suggested Citation

  • Prince Aduama & Zhibo Zhang & Ameena S. Al-Sumaiti, 2023. "Multi-Feature Data Fusion-Based Load Forecasting of Electric Vehicle Charging Stations Using a Deep Learning Model," Energies, MDPI, vol. 16(3), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1309-:d:1047513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gustavo E. Coria & Angel M. Sanchez & Ameena S. Al-Sumaiti & Guiseppe A. Rattá & Sergio R. Rivera & Andrés A. Romero, 2019. "A Framework for Determining a Prediction-Of-Use Tariff Aimed at Coordinating Aggregators of Plug-In Electric Vehicles," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Juncheng Zhu & Zhile Yang & Monjur Mourshed & Yuanjun Guo & Yimin Zhou & Yan Chang & Yanjie Wei & Shengzhong Feng, 2019. "Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches," Energies, MDPI, vol. 12(14), pages 1-19, July.
    3. Majidpour, Mostafa & Qiu, Charlie & Chu, Peter & Pota, Hemanshu R. & Gadh, Rajit, 2016. "Forecasting the EV charging load based on customer profile or station measurement?," Applied Energy, Elsevier, vol. 163(C), pages 134-141.
    4. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wellcome Peujio Jiotsop-Foze & Adrián Hernández-del-Valle & Francisco Venegas-Martínez, 2024. "Electrical Load Forecasting to Plan the Increase in Renewable Energy Sources and Electricity Demand: a CNN-QR-RTCF and Deep Learning Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 186-194, July.
    2. Cao, Jianing & Han, Yuhang & Pan, Nan & Zhang, Jingcheng & Yang, Junwei, 2024. "A data-driven approach to urban charging facility expansion based on bi-level optimization: A case study in a Chinese city," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    2. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    3. Munseok Chang & Sungwoo Bae & Gilhwan Cha & Jaehyun Yoo, 2021. "Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    4. Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    5. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    6. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
    7. Yunsun Kim & Sahm Kim, 2021. "Forecasting Charging Demand of Electric Vehicles Using Time-Series Models," Energies, MDPI, vol. 14(5), pages 1-16, March.
    8. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    9. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    10. Byungsung Lee & Haesung Lee & Hyun Ahn, 2020. "Improving Load Forecasting of Electric Vehicle Charging Stations Through Missing Data Imputation," Energies, MDPI, vol. 13(18), pages 1-15, September.
    11. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    12. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    13. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    14. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    15. Manbachi, M. & Sadu, A. & Farhangi, H. & Monti, A. & Palizban, A. & Ponci, F. & Arzanpour, S., 2016. "Impact of EV penetration on Volt–VAR Optimization of distribution networks using real-time co-simulation monitoring platform," Applied Energy, Elsevier, vol. 169(C), pages 28-39.
    16. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, vol. 11(6), pages 1-18, June.
    17. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    18. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    19. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    20. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1309-:d:1047513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.