IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1728-d1037880.html
   My bibliography  Save this article

An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room

Author

Listed:
  • Kuang-Sheng Liu

    (Department of Architecture and Interior Design, Cheng Shiu University, Kaohsiung City 83301, Taiwan)

  • Iskandar Muda

    (Department of Doctoral Program, Faculty Economic and Business, Universitas Sumatera Utara, Medan 20222, Indonesia)

  • Ming-Hung Lin

    (Department of Electrical Engineering, Cheng Shiu University, Kaohsiung City 83301, Taiwan)

  • Ngakan Ketut Acwin Dwijendra

    (Department of Architecture, Faculty of Engineering, Udayana University, Bali 80361, Indonesia)

  • Gaylord Carrillo Caballero

    (Grupo de Investigación en Energías Alternativas y Fluidos (EOLITO), Universidad Tecnológica de Bolívar (UTB), Cartagena 130002, Colombia)

  • Aníbal Alviz-Meza

    (Research Group en Deterioro de Materiales, Transición Energética y Ciencia de datos DANT3, Facultad de Ingeniería, Arquitectura y Urbanismo, Universidad Señor de Sipán, Chiclayo 14002, Peru)

  • Yulineth Cárdenas-Escrocia

    (Research Group GIOPEN, Energy Department, Universidad de la Costa (CUC), Barranquilla 080016, Colombia)

Abstract

There are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the role of daylight as a source of energy are determined by how they are constructed. In this study, the standard room dimensions, which are suitable for three to five employees, are compared to computer simulations. DesignBuilder and EnergyPlus are utilized to simulate the office’s lighting and energy consumption. This study presents a new method for estimating conventional energy consumption based on gene expression programming (GEP). A gravitational search algorithm (GSA) is implemented in order to optimize the model results. Using input and output data collected from a simulation of conventional energy use, the physical law underlying the problem and the relationship between inputs and outputs are identified. This method has the advantages of being quick and accurate, with no simulation required. Based on effective input parameters and sensitivity analysis, four models are evaluated. These models are used to evaluate the performance of the trained network based on statistical indicators. Among all the GEP models tested in this study, the one with the lowest MAE (0.1812) and RMSE (0.09146) and the highest correlation coefficient (0.90825) is found to be the most accurate.

Suggested Citation

  • Kuang-Sheng Liu & Iskandar Muda & Ming-Hung Lin & Ngakan Ketut Acwin Dwijendra & Gaylord Carrillo Caballero & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1728-:d:1037880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1728/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1728/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
    2. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    3. Anand, Prashant & Cheong, David & Sekhar, Chandra & Santamouris, Mattheos & Kondepudi, Sekhar, 2019. "Energy saving estimation for plug and lighting load using occupancy analysis," Renewable Energy, Elsevier, vol. 143(C), pages 1143-1161.
    4. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    5. Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
    6. Bart Sweerts & Stefan Pfenninger & Su Yang & Doris Folini & Bob Zwaan & Martin Wild, 2019. "Author Correction: Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data," Nature Energy, Nature, vol. 4(8), pages 718-718, August.
    7. Li, Qian & Loy-Benitez, Jorge & Nam, KiJeon & Hwangbo, Soonho & Rashidi, Jouan & Yoo, ChangKyoo, 2019. "Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks," Energy, Elsevier, vol. 178(C), pages 277-292.
    8. Bart Sweerts & Stefan Pfenninger & Su Yang & Doris Folini & Bob Zwaan & Martin Wild, 2019. "Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data," Nature Energy, Nature, vol. 4(8), pages 657-663, August.
    9. Lowitzsch, J. & Hoicka, C.E. & van Tulder, F.J., 2020. "Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Han & Song, Feng & Zheng, Xinye & Chen, Jiaying, 2023. "Community-based energy revolution: An evaluation of China's photovoltaic poverty alleviation Program's economic and social benefits," Energy Policy, Elsevier, vol. 177(C).
    2. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    3. Zeng, Shihong & Tanveer, Arifa & Fu, Xiaolan & Gu, Yuxiao & Irfan, Muhammad, 2022. "Modeling the influence of critical factors on the adoption of green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Cheng, Xinghong & Ye, Dong & Shen, Yanbo & Li, Deping & Feng, Jinming, 2022. "Studies on the improvement of modelled solar radiation and the attenuation effect of aerosol using the WRF-Solar model with satellite-based AOD data over north China," Renewable Energy, Elsevier, vol. 196(C), pages 358-365.
    5. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    6. Guo, Junhong & Chen, Zhuo & Meng, Jing & Zheng, Heran & Fan, Yuri & Ji, Ling & Wang, Xiuquan & Liang, Xi, 2024. "Picturing China's photovoltaic energy future: Insights from CMIP6 climate projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "Quantifying the air pollution impacts on solar photovoltaic capacity factors and potential benefits of pollution control for the solar sector in China," Applied Energy, Elsevier, vol. 365(C).
    8. Abbas, Shahbaz & Techato, Kuaanan & Chiang Hsieh, Lin-Han & Sadeq, Abdellatif M., 2024. "Integrating relational values in social acceptance of photovoltaic energy storage systems: A consumers' perspective assessment using structural equation modeling," Energy, Elsevier, vol. 304(C).
    9. Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    13. Muhammad Amir Raza & Muhammad Mohsin Aman & Altaf Hussain Rajpar & Mohamed Bashir Ali Bashir & Touqeer Ahmed Jumani, 2022. "Towards Achieving 100% Renewable Energy Supply for Sustainable Climate Change in Pakistan," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    14. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    15. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    17. Ferenc Kalmár & Tünde Kalmár, 2020. "Thermal Comfort Aspects of Solar Gains during the Heating Season," Energies, MDPI, vol. 13(7), pages 1-15, April.
    18. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    19. Bernadette Fina & Hans Auer, 2020. "Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law," Energies, MDPI, vol. 13(21), pages 1-31, November.
    20. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1728-:d:1037880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.