IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1579-d1035049.html
   My bibliography  Save this article

A Novel Control Method for Active Power Sharing in Renewable-Energy-Based Micro Distribution Networks

Author

Listed:
  • Wael J. Abdallah

    (Department of Electric Power and Electromechanics, St. Petersburg Mining University, 199106 St. Petersburg, Russia)

  • Khurram Hashmi

    (Department of Electrical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
    School of Electrical and Electronic Engineering, University College Dublin, D04 V1W8 Dublin, Ireland)

  • Muhammad Talib Faiz

    (Department of Electronics and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China)

  • Aymen Flah

    (Energy Processes Environment and Electrical Systems Unit, National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia)

  • Sittiporn Channumsin

    (Space Technology Research Center, Geo-Informatics and Space Technology Development Agency (GISTDA), Chonburi 20230, Thailand)

  • Mohamed A. Mohamed

    (Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61519, Egypt)

  • Denis Anatolievich Ustinov

    (Department of Electric Power and Electromechanics, St. Petersburg Mining University, 199106 St. Petersburg, Russia)

Abstract

The microgrid is an emerging trend in modern power systems. Microgrids consist of controllable power sources, storage, and loads. An elaborate control infrastructure is established to regulate and synchronize the interaction of these components. The control scheme is divided into a hierarchy of several layers, where each layer is composed of multi-agents performing their dedicated functions and arriving at a consensus of corrective values. Lateral and horizontal interaction of such multi-agents forms a comprehensive hierarchical control structure that regulates the microgrid operation to achieve a compendium of objectives, including power sharing, voltage, and frequency regulation. The success of a multi-agent-based control scheme is dependent on the health of the communication media that is used to relay measurements and control signals. Delays in the transmission of control signals result in an overall deterioration of the control performance and non-convergence. This paper proposes novel multi-agent moving average estimators to mitigate the effect of latent communication links and establishes a hierarchical control scheme incorporating these average estimators to accurately arrive at system values during communication delays. Mathematical models are established for the complete microgrid system to test the stability of the proposed method against conventional consensus-based methods. Case-wise simulation studies and lab-scale experimental verification further establish the efficacy and superiority of the proposed control scheme in comparison with other conventionally used control methods.

Suggested Citation

  • Wael J. Abdallah & Khurram Hashmi & Muhammad Talib Faiz & Aymen Flah & Sittiporn Channumsin & Mohamed A. Mohamed & Denis Anatolievich Ustinov, 2023. "A Novel Control Method for Active Power Sharing in Renewable-Energy-Based Micro Distribution Networks," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1579-:d:1035049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1579/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1579/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felipe Ramos & Aline Pinheiro & Rafaela Nascimento & Washington de Araujo Silva Junior & Mohamed A. Mohamed & Andres Annuk & Manoel H. N. Marinho, 2022. "Development of Operation Strategy for Battery Energy Storage System into Hybrid AC Microgrids," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
    2. Mohamed, Mohamed A., 2022. "A relaxed consensus plus innovation based effective negotiation approach for energy cooperation between smart grid and microgrid," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting Chen & Lei Gan & Sheeraz Iqbal & Marek Jasiński & Mohammed A. El-Meligy & Mohamed Sharaf & Samia G. Ali, 2023. "A Novel Evolving Framework for Energy Management in Combined Heat and Electricity Systems with Demand Response Programs," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    2. Xianyang Cui & Yulong Liu & Ding Yuan & Tao Jin & Mohamed A. Mohamed, 2023. "A Hierarchical Coordinated Control Strategy for Power Quality Improvement in Energy Router Integrated Active Distribution Networks," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    3. Xing Liu & Xiaojing Zhang & Aliasghar Baziar, 2023. "Hybrid Machine Learning and Modified Teaching Learning-Based English Optimization Algorithm for Smart City Communication," Sustainability, MDPI, vol. 15(15), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "Distributionally robust operation for integrated rural energy systems with broiler houses," Energy, Elsevier, vol. 254(PC).
    2. Huafang Huang & Sharafat Ali & Yasir Ahmed Solangi, 2023. "Analysis of the Impact of Economic Policy Uncertainty on Environmental Sustainability in Developed and Developing Economies," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    3. Xianyang Cui & Yulong Liu & Ding Yuan & Tao Jin & Mohamed A. Mohamed, 2023. "A New Five-Port Energy Router Structure and Common Bus Voltage Stabilization Control Strategy," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    4. Mariana de Morais Cavalcanti & Tatiane Costa & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Elisabete Barreto & Mohamed A. Mohamed & Adrian Ilinca & Manoel H. N. Marinho, 2023. "Case Studies for Supplying the Alternating Current Auxiliary Systems of Substations with a Voltage Equal to or Higher than 230 kV," Energies, MDPI, vol. 16(14), pages 1-25, July.
    5. Kumar, Navin & Sood, Sandeep Kumar & Saini, Munish, 2024. "Internet of Vehicles (IoV) Based Framework for electricity Demand Forecasting in V2G," Energy, Elsevier, vol. 297(C).
    6. Washington de Araujo Silva Júnior & Andrea Vasconcelos & Ayrlw Carvalho Arcanjo & Tatiane Costa & Rafaela Nascimento & Alex Pereira & Eduardo Jatobá & José Bione Filho & Elisabete Barreto & Roberto Di, 2023. "Characterization of the Operation of a BESS with a Photovoltaic System as a Regular Source for the Auxiliary Systems of a High-Voltage Substation in Brazil," Energies, MDPI, vol. 16(2), pages 1-25, January.
    7. Fahad Alsokhiry & Pierluigi Siano & Andres Annuk & Mohamed A. Mohamed, 2022. "A Novel Time-of-Use Pricing Based Energy Management System for Smart Home Appliances: Cost-Effective Method," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
    8. Shu, Lei & Mo, Yunjeong & Zhao, Dong, 2024. "Energy retrofits for smart and connected communities: Scopes and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Deng, Xinchen & Wang, Feng & Lin, Xianke & Hu, Bing & Arash, Khalatbarisoltan & Hu, Xiaosong, 2022. "Distributed energy management of home-vehicle Nexus with Stationary battery energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Abdulaziz Almalaq & Saleh Albadran & Amer Alghadhban & Tao Jin & Mohamed A. Mohamed, 2022. "An Effective Hybrid-Energy Framework for Grid Vulnerability Alleviation under Cyber-Stealthy Intrusions," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    11. Ali M. Jasim & Basil H. Jasim & Habib Kraiem & Aymen Flah, 2022. "A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    12. Felipe Ramos & Aline Pinheiro & Rafaela Nascimento & Washington de Araujo Silva Junior & Mohamed A. Mohamed & Andres Annuk & Manoel H. N. Marinho, 2022. "Development of Operation Strategy for Battery Energy Storage System into Hybrid AC Microgrids," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
    13. Ailton Gonçalves & Gustavo O. Cavalcanti & Marcílio A. F. Feitosa & Roberto F. Dias Filho & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Manoel H. N. Marinho & Attilio Converti & L, 2023. "Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency," Energies, MDPI, vol. 16(13), pages 1-17, July.
    14. Tatiane Costa & Ayrlw Arcanjo & Andrea Vasconcelos & Washington Silva & Claudia Azevedo & Alex Pereira & Eduardo Jatobá & José Bione Filho & Elisabete Barreto & Marcelo Gradella Villalva & Manoel Mari, 2023. "Development of a Method for Sizing a Hybrid Battery Energy Storage System for Application in AC Microgrid," Energies, MDPI, vol. 16(3), pages 1-24, January.
    15. Diego Jose da Silva & Edmarcio Antonio Belati & Jesús M. López-Lezama, 2023. "A Mathematical Programming Approach for the Optimal Operation of Storage Systems, Photovoltaic and Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-24, January.
    16. Fahad Alsokhiry & Andres Annuk & Toivo Kabanen & Mohamed A. Mohamed, 2022. "A Malware Attack Enabled an Online Energy Strategy for Dynamic Wireless EVs within Transportation Systems," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
    17. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & S. M. Muyeen, 2022. "Grid Connected Microgrid Optimization and Control for a Coastal Island in the Indian Ocean," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    18. Rafaela Nascimento & Felipe Ramos & Aline Pinheiro & Washington de Araujo Silva Junior & Ayrlw M. C. Arcanjo & Roberto F. Dias Filho & Mohamed A. Mohamed & Manoel H. N. Marinho, 2022. "Case Study of Backup Application with Energy Storage in Microgrids," Energies, MDPI, vol. 15(24), pages 1-12, December.
    19. Joelton Deonei Gotz & João Eustáquio Machado Neto & José Rodolfo Galvão & Taysa Millena Banik Marques & Hugo Valadares Siqueira & Emilson Ribeiro Viana & Manoel H. N. Marinho & Mohamed A. Mohamed & Ad, 2023. "Studying Abuse Testing on Lithium-Ion Battery Packaging for Energy Storage Systems," Sustainability, MDPI, vol. 15(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1579-:d:1035049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.