IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1175-d1042880.html
   My bibliography  Save this article

Development of a Method for Sizing a Hybrid Battery Energy Storage System for Application in AC Microgrid

Author

Listed:
  • Tatiane Costa

    (Edson Mororó Moura Institute of Technology—ITEMM, Recife 51020-280, Brazil
    School of Electrical and Computer Engineering, University of Campinas—UNICAMP, Campinas 13083-852, Brazil)

  • Ayrlw Arcanjo

    (Edson Mororó Moura Institute of Technology—ITEMM, Recife 51020-280, Brazil)

  • Andrea Vasconcelos

    (Edson Mororó Moura Institute of Technology—ITEMM, Recife 51020-280, Brazil
    PostGrad Program in Systems Engineering (PPGES), University of Pernambuco—UPE, Recife 50100-010, Brazil)

  • Washington Silva

    (Edson Mororó Moura Institute of Technology—ITEMM, Recife 51020-280, Brazil
    PostGrad Program in Systems Engineering (PPGES), University of Pernambuco—UPE, Recife 50100-010, Brazil)

  • Claudia Azevedo

    (Edson Mororó Moura Institute of Technology—ITEMM, Recife 51020-280, Brazil)

  • Alex Pereira

    (Departamento de Pesquisa, Desenvolvimento e Inovação, Departamento de Engenharia de Geração Solar, Companhia Hidro Elétrica do São Francisco—CHESF, Recife 50761-901, Brazil)

  • Eduardo Jatobá

    (Departamento de Pesquisa, Desenvolvimento e Inovação, Departamento de Engenharia de Geração Solar, Companhia Hidro Elétrica do São Francisco—CHESF, Recife 50761-901, Brazil)

  • José Bione Filho

    (Departamento de Pesquisa, Desenvolvimento e Inovação, Departamento de Engenharia de Geração Solar, Companhia Hidro Elétrica do São Francisco—CHESF, Recife 50761-901, Brazil)

  • Elisabete Barreto

    (Departamento de Pesquisa, Desenvolvimento e Inovação, Departamento de Engenharia de Geração Solar, Companhia Hidro Elétrica do São Francisco—CHESF, Recife 50761-901, Brazil)

  • Marcelo Gradella Villalva

    (School of Electrical and Computer Engineering, University of Campinas—UNICAMP, Campinas 13083-852, Brazil)

  • Manoel Marinho

    (PostGrad Program in Systems Engineering (PPGES), University of Pernambuco—UPE, Recife 50100-010, Brazil)

Abstract

This article addresses the development of the energy compensation method used for the design of hybrid energy storage systems—HBESS. The combination of two battery technologies offers better cost and performance when considering microgrid systems to provide uninterrupted power to sensitive loads (substation auxiliary system) and also provides greater energy security. In the event of a failure, the load needs to continue operating, and batteries such as lithium ions have a fast response, but are expensive for large-scale systems. However, some technologies offer low-cost and good availability of energy for long hours of discharge, such as lead–acid batteries. Consequently, different battery technologies can be used to meet all the needs of the sensitive loads. A specific method for sizing a HBESS was developed for islanded microgrids to support sensitive loads. This method was developed to meet the demand for substations outside the Brazilian standard of power systems that lack an uninterrupted and reliable energy source. The method is validated by designing a microgrid to support the auxiliary systems of a transmission substation in northeastern Brazil. The results showed a system with a capacity of 1215 kWh of lead-carbon and 242 kWh of lithium ions is necessary to maintain an islanded microgrid for at least 10 h. Furthermore, the microgrid comprises a PV plant with an AC output power of 700 kW in connected operation and 100 kW when islanded from the grid.

Suggested Citation

  • Tatiane Costa & Ayrlw Arcanjo & Andrea Vasconcelos & Washington Silva & Claudia Azevedo & Alex Pereira & Eduardo Jatobá & José Bione Filho & Elisabete Barreto & Marcelo Gradella Villalva & Manoel Mari, 2023. "Development of a Method for Sizing a Hybrid Battery Energy Storage System for Application in AC Microgrid," Energies, MDPI, vol. 16(3), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1175-:d:1042880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    2. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    3. Felipe Ramos & Aline Pinheiro & Rafaela Nascimento & Washington de Araujo Silva Junior & Mohamed A. Mohamed & Andres Annuk & Manoel H. N. Marinho, 2022. "Development of Operation Strategy for Battery Energy Storage System into Hybrid AC Microgrids," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joelton Deonei Gotz & João Eustáquio Machado Neto & José Rodolfo Galvão & Taysa Millena Banik Marques & Hugo Valadares Siqueira & Emilson Ribeiro Viana & Manoel H. N. Marinho & Mohamed A. Mohamed & Ad, 2023. "Studying Abuse Testing on Lithium-Ion Battery Packaging for Energy Storage Systems," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    2. Antonio Venancio M. L. Filho & Andrea S. M. Vasconcelos & Washington de A. S. Junior & Nicolau K. L. Dantas & Ayrlw Maynyson C. Arcanjo & Amanda C. M. Souza & Amanda L. Fernandes & Kaihang Zhang & Kun, 2023. "Impact Analysis and Energy Quality of Photovoltaic, Electric Vehicle and BESS Lead-Carbon Recharge Station in Brazil," Energies, MDPI, vol. 16(5), pages 1-18, March.
    3. Mariana de Morais Cavalcanti & Tatiane Costa & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Elisabete Barreto & Mohamed A. Mohamed & Adrian Ilinca & Manoel H. N. Marinho, 2023. "Case Studies for Supplying the Alternating Current Auxiliary Systems of Substations with a Voltage Equal to or Higher than 230 kV," Energies, MDPI, vol. 16(14), pages 1-25, July.
    4. Ailton Gonçalves & Gustavo O. Cavalcanti & Marcílio A. F. Feitosa & Roberto F. Dias Filho & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Manoel H. N. Marinho & Attilio Converti & L, 2023. "Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency," Energies, MDPI, vol. 16(13), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luta, Doudou N. & Raji, Atanda K., 2019. "Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications," Energy, Elsevier, vol. 166(C), pages 530-540.
    2. Weiliang Wang & Dan Wang & Liu Liu & Hongjie Jia & Yunqiang Zhi & Zhengji Meng & Wei Du, 2019. "Research on Modeling and Hierarchical Scheduling of a Generalized Multi-Source Energy Storage System in an Integrated Energy Distribution System," Energies, MDPI, vol. 12(2), pages 1-28, January.
    3. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Karellas, S. & Tzouganatos, N., 2014. "Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 865-882.
    5. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    6. Shuang Rong & Weixing Li & Zhimin Li & Yong Sun & Taiyi Zheng, 2015. "Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method," Energies, MDPI, vol. 9(1), pages 1-21, December.
    7. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    8. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    9. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    10. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    11. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    12. Morgan, Eric & Manwell, James & McGowan, Jon, 2014. "Wind-powered ammonia fuel production for remote islands: A case study," Renewable Energy, Elsevier, vol. 72(C), pages 51-61.
    13. Goraj, Rafał & Kiciński, Marcin & Ślefarski, Rafał & Duczkowska, Anna, 2023. "Validity of decision criteria for selecting power-to-gas projects in Poland," Utilities Policy, Elsevier, vol. 83(C).
    14. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    15. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    16. Benato, Alberto & Stoppato, Anna, 2018. "Heat transfer fluid and material selection for an innovative Pumped Thermal Electricity Storage system," Energy, Elsevier, vol. 147(C), pages 155-168.
    17. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    18. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    19. Johnson, Nathan G. & Bryden, Kenneth M., 2012. "Energy supply and use in a rural West African village," Energy, Elsevier, vol. 43(1), pages 283-292.
    20. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1175-:d:1042880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.