IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1543-d1034569.html
   My bibliography  Save this article

Impact of Green Development Mechanism Innovation on Total-Factor Environmental Efficiency: A Quasi-Natural Experiment Based on National Pilot Cities

Author

Listed:
  • Linbo Zhang

    (Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao 266237, China
    Center for Yellow River Ecosystem Products Value Realization, Shandong University, Qingdao266237, China)

  • Wenjing Xiang

    (School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China)

  • Dongsheng Shi

    (School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China)

  • Tian Liang

    (Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao 266237, China
    Center for Yellow River Ecosystem Products Value Realization, Shandong University, Qingdao266237, China)

  • Xi Xiong

    (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Shuyao Wu

    (Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao 266237, China
    Center for Yellow River Ecosystem Products Value Realization, Shandong University, Qingdao266237, China)

  • Wentao Zhang

    (Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao 266237, China
    Center for Yellow River Ecosystem Products Value Realization, Shandong University, Qingdao266237, China)

  • Duogui Yang

    (Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
    School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The implementation of green development has become an important choice for countries seeking the harmonious development of the economy and the environment. The National Ecological Civilization Pilot Zone is an innovative institutional mechanism for exploring green development in China. This study utilizes the National Ecological Civilization Pilot Zone policy as a quasi-natural experiment. Adopting data from 290 prefecture-level and above cities in China during 2014–2019 as the research object, this study matches the propensity score and improved differences-in-differences to assess the impact of green development mechanism innovation on regional total-factor environmental efficiency. The results show that this innovation had a significant impact on the improvement of total-factor environmental efficiency. Compared with non-pilot cities, the implementation of pilot zone areas contributed 16.78% to the growth of total-factor environmental efficiency in the experimental group cities. In addition, further analysis shows that mechanism innovation is more effective in areas with high pollution and high resource consumption. This study enriches the research on evaluation of the impact of innovation in green development mechanisms and provides a reference for further promoting pilot national ecological civilization zones.

Suggested Citation

  • Linbo Zhang & Wenjing Xiang & Dongsheng Shi & Tian Liang & Xi Xiong & Shuyao Wu & Wentao Zhang & Duogui Yang, 2023. "Impact of Green Development Mechanism Innovation on Total-Factor Environmental Efficiency: A Quasi-Natural Experiment Based on National Pilot Cities," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1543-:d:1034569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    2. Liu, Mengdi & Tan, Ruipeng & Zhang, Bing, 2021. "The costs of “blue sky”: Environmental regulation, technology upgrading, and labor demand in China," Journal of Development Economics, Elsevier, vol. 150(C).
    3. Michael Greenstone & Rema Hanna, 2014. "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," American Economic Review, American Economic Association, vol. 104(10), pages 3038-3072, October.
    4. Liu, Yunqiang & Zhu, Jialing & Li, Eldon Y. & Meng, Zhiyi & Song, Yan, 2020. "Environmental regulation, green technological innovation, and eco-efficiency: The case of Yangtze river economic belt in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    5. Shah, Syed Ale Raza & Naqvi, Syed Asif Ali & Riaz, Sabahat & Anwar, Sofia & Abbas, Nasir, 2020. "Nexus of biomass energy, key determinants of economic development and environment: A fresh evidence from Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    7. Wang, Yun & Sun, Xiaohua & Wang, Baocai & Liu, Xiaoling, 2020. "Energy saving, GHG abatement and industrial growth in OECD countries: A green productivity approach," Energy, Elsevier, vol. 194(C).
    8. Edward Manderson & Richard Kneller, 2012. "Environmental Regulations, Outward FDI and Heterogeneous Firms: Are Countries Used as Pollution Havens?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 317-352, March.
    9. Mazzanti, Massimiliano & Zoboli, Roberto, 2009. "Environmental efficiency and labour productivity: Trade-off or joint dynamics? A theoretical investigation and empirical evidence from Italy using NAMEA," Ecological Economics, Elsevier, vol. 68(4), pages 1182-1194, February.
    10. Xiaole Wang & Feng Dong & Yuling Pan & Yajie Liu, 2022. "Transport Infrastructure, High-Quality Development and Industrial Pollution: Fresh Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-24, August.
    11. Halkos, George Emm. & Tzeremes, Nickolaos G., 2009. "Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis," Ecological Economics, Elsevier, vol. 68(7), pages 2168-2176, May.
    12. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    13. Alberto Abadie & Guido W. Imbens, 2016. "Matching on the Estimated Propensity Score," Econometrica, Econometric Society, vol. 84, pages 781-807, March.
    14. Ouyang, Xiaoling & Fang, Xingming & Cao, Yan & Sun, Chuanwang, 2020. "Factors behind CO2 emission reduction in Chinese heavy industries: Do environmental regulations matter?," Energy Policy, Elsevier, vol. 145(C).
    15. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    16. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    17. Xingwei Li & Jiachi Dai & Jinrong He & Jingru Li & Yicheng Huang & Xiang Liu & Qiong Shen, 2022. "Mechanism of Enterprise Green Innovation Behavior Considering Coevolution Theory," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    18. Haijie Wang & Yong Geng & Jingxue Zhang & Xiqiang Xia & Yanchao Feng, 2021. "Ecological Civilization Demonstration Zone, Air Pollution Reduction, and Political Promotion Tournament in China: Empirical Evidence from a Quasi-Natural Experiment," IJERPH, MDPI, vol. 18(22), pages 1-12, November.
    19. Hancevic, Pedro Ignacio, 2016. "Environmental regulation and productivity: The case of electricity generation under the CAAA-1990," Energy Economics, Elsevier, vol. 60(C), pages 131-143.
    20. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    21. Huang, Zhehao & Liao, Gaoke & Li, Zhenghui, 2019. "Loaning scale and government subsidy for promoting green innovation," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 148-156.
    22. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    23. Wang, Xipan & Song, Junnian & Duan, Haiyan & Wang, Xian'en, 2021. "Coupling between energy efficiency and industrial structure: An urban agglomeration case," Energy, Elsevier, vol. 234(C).
    24. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    25. Yagi, Michiyuki & Hidemichi, Fujii & Hoang, Vincent & Managi, Shunsuke, 2015. "Environmental efficiency of energy, materials, and emissions," MPRA Paper 65358, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    2. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    3. Tifang Ye & Xiuli Xiang & Xiangyu Ge & Keling Yang, 2022. "Research on Green Finance and Green Development Based Eco-Efficiency and Spatial Econometric Analysis," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    4. Malin Song & Jianlin Wang & Jiajia Zhao & Tomas Baležentis & Zhiyang Shen, 2020. "Production and safety efficiency evaluation in Chinese coal mines: accident deaths as undesirable output," Annals of Operations Research, Springer, vol. 291(1), pages 827-845, August.
    5. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    6. Gerami, Javad & Mozaffari, Mohammad Reza & Wanke, Peter F. & Correa, Henrique L., 2022. "Improving information reliability of non-radial value efficiency analysis: An additive slacks based measure approach," European Journal of Operational Research, Elsevier, vol. 298(3), pages 967-978.
    7. Li, Shuangmei & Zhu, Xuehong & Zhang, Tao, 2023. "Optimum combination of heterogeneous environmental policy instruments and market for green transformation: Empirical evidence from China's metal sector," Energy Economics, Elsevier, vol. 123(C).
    8. Cui, Huanyu & Cao, Yuequn, 2023. "How can market-oriented environmental regulation improve urban energy efficiency? Evidence from quasi-experiment in China's SO2 trading emissions system," Energy, Elsevier, vol. 278(C).
    9. Jingbo Liu & Haoyuan Feng & Kun Wang, 2022. "The Low-Carbon City Pilot Policy and Urban Land Use Efficiency: A Policy Assessment from China," Land, MDPI, vol. 11(5), pages 1-18, April.
    10. Yuxin Fang & Hongjun Cao, 2022. "Environmental Decentralization, Heterogeneous Environmental Regulation, and Green Total Factor Productivity—Evidence from China," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    11. Satoshi Honma, 2015. "Does international trade improve environmental efficiency? An application of a super slacks-based measure of efficiency," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-12, December.
    12. Chen, Xiaodong & Guo, Anda & Miao, Zhuang & Zhu, Pengyu, 2024. "Assessing the performance of the transport sector within the global supply chain context: Decomposition of energy and environmental productivity," Applied Energy, Elsevier, vol. 358(C).
    13. Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
    14. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    15. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    16. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).
    17. Ma, Guangcheng & Cao, Jianhua & Famanta, Mahamane, 2023. "Does the coordinated development of two-way FDI increase the green energy efficiency of Chinese cities? Evidence from Chinese listed companies," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 59-77.
    18. Lei, Ming & Yin, Zihan & Yu, Xiaowen & Deng, Shijie, 2017. "Carbon-weighted economic development performance and driving force analysis: Evidence from China," Energy Policy, Elsevier, vol. 111(C), pages 179-192.
    19. Yu Zhang & Wenliang Geng & Pengyan Zhang & Erling Li & Tianqi Rong & Ying Liu & Jingwen Shao & Hao Chang, 2020. "Dynamic Changes, Spatiotemporal Differences and Factors Influencing the Urban Eco-Efficiency in the Lower Reaches of the Yellow River," IJERPH, MDPI, vol. 17(20), pages 1-19, October.
    20. Fan, Di & Peng, Bo & Wu, Jianxin & Zhang, ZhongXiang, 2024. "The convergence of total-factor energy efficiency across Chinese cities: A distribution dynamics approach," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 406-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1543-:d:1034569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.