IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i3p867-876.html
   My bibliography  Save this article

Russell and slack-based measures of efficiency: A unifying framework

Author

Listed:
  • Zelenyuk, Valentin
  • Zhao, Shirong

Abstract

Some of the popular technical efficiency measures are not able to account for potential slacks in inputs or outputs and may misrepresent the degree of inefficiency pertinent to firms, industries, and countries when compared to their peers. A wide range of methods have been proposed in the literature over the last four decades to address this important issue. The precise relationship among many of these methods is not always clear. In this paper we briefly review this literature and propose a unifying framework for such measures, one which embraces many other important approaches in efficiency measurement (including slack-based measures, Russell efficiency measures, etc.) as special cases in this general framework. A numerical example is also presented to illustrate the differences among the special cases of the efficiency measures, complemented with the computational code in R for practitioners interested in using these models.

Suggested Citation

  • Zelenyuk, Valentin & Zhao, Shirong, 2024. "Russell and slack-based measures of efficiency: A unifying framework," European Journal of Operational Research, Elsevier, vol. 318(3), pages 867-876.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:3:p:867-876
    DOI: 10.1016/j.ejor.2024.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dmitruk, Andrei V. & Koshevoy, Gleb A., 1991. "On the existence of a technical efficiency criterion," Journal of Economic Theory, Elsevier, vol. 55(1), pages 121-144, October.
    2. Tsionas, Mike & Parmeter, Christopher F. & Zelenyuk, Valentin, 2023. "Bayesian Artificial Neural Networks for frontier efficiency analysis," Journal of Econometrics, Elsevier, vol. 236(2).
    3. Manh Pham & Léopold Simar & Valentin Zelenyuk, 2024. "Statistical Inference for Aggregation of Malmquist Productivity Indices," Operations Research, INFORMS, vol. 72(4), pages 1615-1629, July.
    4. Färe, Rolf & Zelenyuk, Valentin, 2020. "Profit efficiency: Generalization, business accounting and the role of convexity," Economics Letters, Elsevier, vol. 196(C).
    5. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    6. Simar, Léopold & Vanhems, Anne & Wilson, Paul W., 2012. "Statistical inference for DEA estimators of directional distances," European Journal of Operational Research, Elsevier, vol. 220(3), pages 853-864.
    7. Léopold Simar & Valentin Zelenyuk, 2018. "Central Limit Theorems for Aggregate Efficiency," Operations Research, INFORMS, vol. 66(1), pages 137-149, January.
    8. Ruggiero, John, 1996. "Efficiency of Educational Production: An Analysis of New York School Districts," The Review of Economics and Statistics, MIT Press, vol. 78(3), pages 499-509, August.
    9. Thanassoulis, E. & Dyson, R. G., 1992. "Estimating preferred target input-output levels using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 56(1), pages 80-97, January.
    10. Ruggiero, John & Bretschneider, Stuart, 1998. "The weighted Russell measure of technical efficiency," European Journal of Operational Research, Elsevier, vol. 108(2), pages 438-451, July.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2015. "When Bias Kills The Variance: Central Limit Theorems For Dea And Fdh Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 31(2), pages 394-422, April.
    13. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    14. Rolf Färe & Xinju He & Sungko Li & Valentin Zelenyuk, 2019. "A Unifying Framework for Farrell Profit Efficiency Measurement," Operations Research, INFORMS, vol. 67(1), pages 183-197, January.
    15. Zieschang, Kimberly D., 1984. "An extended farrell technical efficiency measure," Journal of Economic Theory, Elsevier, vol. 33(2), pages 387-396, August.
    16. Färe, Rolf & Fukuyama, Hirofumi & Grosskopf, Shawna & Zelenyuk, Valentin, 2015. "Decomposing profit efficiency using a slack-based directional distance function," European Journal of Operational Research, Elsevier, vol. 247(1), pages 335-337.
    17. Sickles,Robin C. & Zelenyuk,Valentin, 2019. "Measurement of Productivity and Efficiency," Cambridge Books, Cambridge University Press, number 9781107036161, September.
    18. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    19. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    20. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    21. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    22. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    23. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mike Tsionas & Valentin Zelenyuk, 2021. "Goodness-of-fit in Optimizing Models of Production: A Generalization with a Bayesian Perspective," CEPA Working Papers Series WP182021, School of Economics, University of Queensland, Australia.
    2. Tsionas, Mike & Parmeter, Christopher F. & Zelenyuk, Valentin, 2023. "Bayesian Artificial Neural Networks for frontier efficiency analysis," Journal of Econometrics, Elsevier, vol. 236(2).
    3. Valentin Zelenyuk, 2021. "Performance Analysis: Economic Foundations & Trends," CEPA Working Papers Series WP162021, School of Economics, University of Queensland, Australia.
    4. Manh D. Pham & Valentin Zelenyuk, 2018. "Slack-based directional distance function in the presence of bad outputs: theory and application to Vietnamese banking," Empirical Economics, Springer, vol. 54(1), pages 153-187, February.
    5. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    6. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    7. Färe, Rolf & Fukuyama, Hirofumi & Grosskopf, Shawna & Zelenyuk, Valentin, 2016. "Cost decompositions and the efficient subset," Omega, Elsevier, vol. 62(C), pages 123-130.
    8. Zhichao Wang & Bao Hoang Nguyen & Valentin Zelenyuk, 2024. "Performance analysis of hospitals in Australia and its peers: a systematic and critical review," Journal of Productivity Analysis, Springer, vol. 62(2), pages 139-173, October.
    9. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Managi, Shunsuke, 2014. "Non-Radial Directional Performance Measurement with Undesirable Outputs," MPRA Paper 57189, University Library of Munich, Germany.
    10. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    11. Simar, Léopold & Zelenyuk, Valentin & Zhao, Shirong, 2024. "Inference for aggregate efficiency: Theory and guidelines for practitioners," European Journal of Operational Research, Elsevier, vol. 316(1), pages 240-254.
    12. Song, Malin & Wang, Jianlin, 2018. "Environmental efficiency evaluation of thermal power generation in China based on a slack-based endogenous directional distance function model," Energy, Elsevier, vol. 161(C), pages 325-336.
    13. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    14. Simar, Léopold & Wilson, Paul W., 2020. "Technical, allocative and overall efficiency: Estimation and inference," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1164-1176.
    15. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Measuring technical efficiency for multi-input multi-output production processes through OneClass Support Vector Machines: a finite-sample study," Operational Research, Springer, vol. 23(3), pages 1-33, September.
    16. Juo, Jia-Ching & Fu, Tsu-Tan & Yu, Ming-Miin, 2012. "Non-oriented slack-based decompositions of profit change with an application to Taiwanese banking," Omega, Elsevier, vol. 40(5), pages 550-561.
    17. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    18. Macedo, Pedro & Scotto, Manuel, 2014. "Cross-entropy estimation in technical efficiency analysis," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 124-130.
    19. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    20. Adler, Nicole & Volta, Nicola, 2016. "Accounting for externalities and disposability: A directional economic environmental distance function," European Journal of Operational Research, Elsevier, vol. 250(1), pages 314-327.

    More about this item

    Keywords

    Russell efficiency; Slack-based efficiency; Non-parametric efficiency estimators; Data Envelopment Analysis;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:3:p:867-876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.