IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1446-d1033203.html
   My bibliography  Save this article

Nanoparticle Mediated Plant Tolerance to Heavy Metal Stress: What We Know?

Author

Listed:
  • Mohammad Faizan

    (Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
    These authors contributed equally to this work.)

  • Pravej Alam

    (Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
    These authors contributed equally to this work.)

  • Vishnu D. Rajput

    (Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov on Don, Russia)

  • Ahmad Faraz

    (School of Life Sciences, Glocal University, Saharanpur 247121, India)

  • Shadma Afzal

    (Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India)

  • S. Maqbool Ahmed

    (Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India)

  • Fang-Yuan Yu

    (Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China)

  • Tatiana Minkina

    (Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov on Don, Russia)

  • Shamsul Hayat

    (Plant Physiology Lab, Department of Botany, Aligarh Muslim University, Aligarh 202002, India)

Abstract

Nanoparticles (NPs) are playing an important role in addressing various environmental constraints by giving ingenious and successful resolutions. Heavy metal (HM) stress has gained significant importance in the last few years because of its speedy incorporation into agricultural sectors. Due to exclusive physiochemical properties, NPs can be effectively applied for stress mitigation strategies. NPs are highly effective over bulk scale parts owing to the control of the enhanced surface area and the possibility for specific properties to enhance nutrient uptake. In the present review, we explore the use of NPs as an environmentally sound practice to enhance plant growth when exposed to abiotic stress, particularly HM stress. Furthermore, we display an extensive summary of recent progress concerning the role of NPs in HM stress tolerance. This review paper will also be useful for comprehending phytoremediation of contaminated soils and indicates the prospective research required for the cooperative submission of NPs in the soil for sustainable agriculture.

Suggested Citation

  • Mohammad Faizan & Pravej Alam & Vishnu D. Rajput & Ahmad Faraz & Shadma Afzal & S. Maqbool Ahmed & Fang-Yuan Yu & Tatiana Minkina & Shamsul Hayat, 2023. "Nanoparticle Mediated Plant Tolerance to Heavy Metal Stress: What We Know?," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1446-:d:1033203
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farooq Shah & Wei Wu, 2019. "Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    2. Wei Zhang & Jinghua Long & Jianmin Geng & Jie Li & Zhongyi Wei, 2020. "Impact of Titanium Dioxide Nanoparticles on Cd Phytotoxicity and Bioaccumulation in Rice ( Oryza sativa L.)," IJERPH, MDPI, vol. 17(9), pages 1-14, April.
    3. Ilia Lobzenko & Marina Burachevskaya & Inna Zamulina & Anatoly Barakhov & Tatiana Bauer & Saglara Mandzhieva & Svetlana Sushkova & Tatiana Minkina & Andrey Tereschenko & Valery Kalinichenko & Oleg Khr, 2022. "Development of a Unique Technology for the Pyrolysis of Rice Husk Biochar for Promising Heavy Metal Remediation," Agriculture, MDPI, vol. 12(10), pages 1-11, October.
    4. Ingrid P. S. Araújo & Dayana B. Costa & Rita J. B. De Moraes, 2014. "Identification and Characterization of Particulate Matter Concentrations at Construction Jobsites," Sustainability, MDPI, vol. 6(11), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul Wahab & Farwa Batool & Murad Muhammad & Wajid Zaman & Rafid Magid Mikhlef & Muhammad Naeem, 2023. "Current Knowledge, Research Progress, and Future Prospects of Phyto-Synthesized Nanoparticles Interactions with Food Crops under Induced Drought Stress," Sustainability, MDPI, vol. 15(20), pages 1-40, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manogna R. L. & Aswini Kumar Mishra, 2022. "Agricultural production efficiency of Indian states: Evidence from data envelopment analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4244-4255, October.
    2. Zehra Ekin, 2019. "Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture," Sustainability, MDPI, vol. 11(12), pages 1-13, June.
    3. Sicheng Zhang & Rui Zhao & Kening Wu & Qin Huang & Long Kang, 2021. "Effects of the Rapid Construction of a High-Quality Plough Layer Based on Woody Peat in a Newly Reclaimed Cultivated Land Area," Agriculture, MDPI, vol. 12(1), pages 1-16, December.
    4. Massamba Diop & Ngonidzashe Chirinda & Adnane Beniaich & Mohamed El Gharous & Khalil El Mejahed, 2022. "Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands," Sustainability, MDPI, vol. 14(20), pages 1-29, October.
    5. Hui Yan & Guoliang Ding & Hongyang Li & Yousong Wang & Lei Zhang & Qiping Shen & Kailun Feng, 2019. "Field Evaluation of the Dust Impacts from Construction Sites on Surrounding Areas: A City Case Study in China," Sustainability, MDPI, vol. 11(7), pages 1-19, March.
    6. Kazım Onur Demirarslan & Mustafa Zeybek, 2022. "Conventional air pollutant source determination using bivariate polar plot in Black Sea, Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2736-2766, February.
    7. Belén López-Felices & José A. Aznar-Sánchez & Juan F. Velasco-Muñoz & María Piquer-Rodríguez, 2020. "Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    8. Qiao Liang & Kangwei Ma & Wenhao Liu, 2023. "The role of farmer cooperatives in promoting environmentally sustainable agricultural development in China: A review," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 94(3), pages 741-759, September.
    9. Parvender Sheoran & Arvind Kumar & Raman Sharma & Kailash Prajapat & Ashwani Kumar & Arijit Barman & R. Raju & Satyendra Kumar & Yousuf Jaffer Dar & Ranjay K. Singh & Satish Kumar Sanwal & Rajender Ku, 2021. "Quantitative Dissection of Salt Tolerance for Sustainable Wheat Production in Sodic Agro-Ecosystems through Farmers’ Participatory Approach: An Indian Experience," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    10. Wei Zhang & Jinghua Long & Xueru Zhang & Weining Shen & Zhongyi Wei, 2020. "Pollution and Ecological Risk Evaluation of Heavy Metals in the Soil and Sediment around the HTM Tailings Pond, Northeastern China," IJERPH, MDPI, vol. 17(19), pages 1-10, September.
    11. Jeong-Mi Do & Hee-Jin Kim & Sun-Young Shin & Seong-Im Park & Jin-Ju Kim & Ho-Sung Yoon, 2023. "OsHSP 17.9, a Small Heat Shock Protein, Confers Improved Productivity and Tolerance to High Temperature and Salinity in a Natural Paddy Field in Transgenic Rice Plants," Agriculture, MDPI, vol. 13(5), pages 1-14, April.
    12. Bitopi Biswas & Mohammad Tariful Alam Khan & Mohammad Billal Hossain Momen & Mohammad. Rashedur Rahman Tanvir & Abu Mohammad Shahidul Alam & M Robiul Islam Islam, 2024. "Advancements in fuzzy expert systems for site-specific nitrogen fertilisation: Incorporating RGB colour codes and irrigation schedules for precision maize production in Bangladesh," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 70(3), pages 155-166.
    13. Haoran Li & Ali Cheshmehzangi & Zhiang Zhang & Zhaohui Su & Saeid Pourroostaei Ardakani & Maycon Sedrez & Ayotunde Dawodu, 2022. "The Correlation Analysis between Air Quality and Construction Sites: Evaluation in the Urban Environment during the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    14. Dunja Malenica & Marko Kass & Rajeev Bhat, 2022. "Sustainable Management and Valorization of Agri-Food Industrial Wastes and By-Products as Animal Feed: For Ruminants, Non-Ruminants and as Poultry Feed," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    15. Ping Zhang & Bo Hong & Liang He & Fei Cheng & Peng Zhao & Cailiang Wei & Yunhui Liu, 2015. "Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural N," IJERPH, MDPI, vol. 12(10), pages 1-25, September.
    16. Yuxuan Xu & Hongbin Liu & Jie Lyu & Ying Xue, 2022. "What Influences Farmers’ Adoption of Soil Testing and Formulated Fertilization Technology in Black Soil Areas? An Empirical Analysis Based on Logistic-ISM Model," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    17. Jing, Bing & Shah, Farooq & Xiao, Enshi & Coulter, Jeffrey A. & Wu, Wei, 2020. "Sprinkler irrigation increases grain yield of sunflower without enhancing the risk of root lodging in a dry semi-humid region," Agricultural Water Management, Elsevier, vol. 239(C).
    18. Wan, Xuejie & Wu, Wei & Liao, Yuncheng, 2021. "Mitigating ammonia volatilization and increasing nitrogen use efficiency through appropriate nitrogen management under supplemental irrigation and rain–fed condition in winter wheat," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Luis Claudio A. Borja & Sandro Fábio César & Rita Dione A. Cunha & Asher Kiperstok, 2018. "A Quantitative Method for Prediction of Environmental Aspects in Construction Sites of Residential Buildings," Sustainability, MDPI, vol. 10(6), pages 1-38, June.
    20. Arvind Kumar Shukla & Sanjib Kumar Behera & Chandra Prakash & Ashok Kumar Patra & Ch Srinivasa Rao & Suresh Kumar Chaudhari & Soumitra Das & Anil Kumar Singh & Andrew Green, 2021. "Assessing Multi-Micronutrients Deficiency in Agricultural Soils of India," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1446-:d:1033203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.