IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16737-d1298055.html
   My bibliography  Save this article

Evaluation of the Thermal Performance of Two Passive Facade System Solutions for Sustainable Development

Author

Listed:
  • Zaloa Azkorra-Larrinaga

    (ENEDI Research Group, Department of Energy Engineering, University of the Basque Country (UPV/EHU), Torres Quevedo 1, 48013 Bilbao, Spain)

  • Naiara Romero-Antón

    (ENEDI Research Group, Department of Energy Engineering, University of the Basque Country (UPV/EHU), Torres Quevedo 1, 48013 Bilbao, Spain)

  • Koldobika Martín-Escudero

    (ENEDI Research Group, Department of Energy Engineering, University of the Basque Country (UPV/EHU), Torres Quevedo 1, 48013 Bilbao, Spain)

  • Gontzal Lopez-Ruiz

    (ENEDI Research Group, Department of Energy Engineering, University of the Basque Country (UPV/EHU), Torres Quevedo 1, 48013 Bilbao, Spain)

  • Catalina Giraldo-Soto

    (ENEDI Research Group, Department of Energy Engineering, University of the Basque Country (UPV/EHU), Torres Quevedo 1, 48013 Bilbao, Spain)

Abstract

Sustainable development is essential for the future of the planet. Using passive elements, like ventilated facades based on insulation and air chambers, or living walls, which are solutions based on nature, is a powerful strategy for cities to improve their thermal environment, reduce energy consumption, and mitigate the effects of climate change. This approach allows for the quantification of the influence of passive surfaces on energy fluxes compared to bare surfaces. In addition, it delves into understanding how the incorporation of vegetation on building facades alters surface energy fluxes, involving a combination of physical and biochemical processes. This comprehensive investigation seeks to harness the potential of passive and natural solutions to address the pressing challenges of urban sustainability and climate resilience. This research uses a surface energy balance model to analyze the thermal performance of two facades using experimental data from a PASLINK test cell. This study uses the grey box RC model, which links continuous-time ordinary differential equations with discrete measurement data points. This model provides insight into the complex interplay among factors that influence the thermal behavior of building facades, with the goal of comprehensively understanding how ventilated and green facades affect the dynamics of energy flow compared to conventional facades. The initial thermal resistance of the bare facade was 0.75 (°C m 2 )/W. The introduction of a ventilated facade significantly increased this thermal resistance to 2.47 (°C m 2 )/W due to the insulating capacity of the air chamber and its insulating layer (1.70 (°C m 2 )/W). Regarding the modular living wall, it obtained a thermal resistance value of 1.22 (°C m 2 )/W (this vegetated facade does not have an insulating layer). In this context, the modular living wall proved to be effective in reducing convective energy by 68% compared with the non-green facade. It is crucial to highlight that evapotranspiration was the primary mechanism for energy dissipation in the green facade. The experiments conclusively show that both the modular living wall and open-ventilated facade significantly reduce solar heat loads compared with non-passive bare wall facades, demonstrating their effectiveness in enhancing thermal performance and minimizing heat absorption.

Suggested Citation

  • Zaloa Azkorra-Larrinaga & Naiara Romero-Antón & Koldobika Martín-Escudero & Gontzal Lopez-Ruiz & Catalina Giraldo-Soto, 2023. "Evaluation of the Thermal Performance of Two Passive Facade System Solutions for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16737-:d:1298055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jim, C.Y., 2015. "Thermal performance of climber greenwalls: Effects of solar irradiance and orientation," Applied Energy, Elsevier, vol. 154(C), pages 631-643.
    2. Ling, Haoshu & Wang, Liang & Chen, Chao & Chen, Haisheng, 2019. "Numerical investigations of optimal phase change material incorporated into ventilated walls," Energy, Elsevier, vol. 172(C), pages 1187-1197.
    3. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Oquendo-Di Cosola, V. & Olivieri, F. & Ruiz-García, L., 2022. "A systematic review of the impact of green walls on urban comfort: temperature reduction and noise attenuation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Ileana Blanco & Fabiana Convertino, 2023. "Thermal Performance of Green Façades: Research Trends Analysis Using a Science Mapping Approach," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    4. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    5. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    8. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    10. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Coma, Julià & Chàfer, Marta & Pérez, Gabriel & Cabeza, Luisa F., 2020. "How internal heat loads of buildings affect the effectiveness of vertical greenery systems? An experimental study," Renewable Energy, Elsevier, vol. 151(C), pages 919-930.
    12. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    13. Yue, Hao & Ou, Yangcen & Wang, Jiuao & Wang, Haibo & Du, Zongliang & Du, Xiaosheng & Cheng, Xu, 2024. "Ti3C2Tx MXene/delignified wood supported flame-retardant phase-change composites with superior solar-thermal conversion efficiency and highly electromagnetic interference shielding for efficient therm," Energy, Elsevier, vol. 286(C).
    14. Priscila Weruska Stark da Silva & Denise Duarte & Stephan Pauleit, 2023. "The Role of the Design of Public Squares and Vegetation Composition on Human Thermal Comfort in Different Seasons a Quantitative Assessment," Land, MDPI, vol. 12(2), pages 1-20, February.
    15. Sarrafha, Hamid & Kasaeian, Alibakhsh & Jahangir, Mohammad Hossein & Taylor, Robert A., 2021. "Transient thermal response of multi-walled carbon nanotube phase change materials in building walls," Energy, Elsevier, vol. 224(C).
    16. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    17. Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
    18. Kenzhekhanov, Sultan & Memon, Shazim Ali & Adilkhanova, Indira, 2020. "Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate," Energy, Elsevier, vol. 192(C).
    19. Noemi Caltabellotta & Felicia Cavaleri & Carlo Greco & Kestutis Navickas & Carlo Scibetta & Laura Giammanco, 2019. "Integration of green roofs&walls in urban areas," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 61-78.
    20. Cansu Iraz Seyrek Şık & Agata Woźniczka & Barbara Widera, 2022. "A Conceptual Framework for the Design of Energy-Efficient Vertical Green Façades," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16737-:d:1298055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.