IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223028359.html
   My bibliography  Save this article

Ti3C2Tx MXene/delignified wood supported flame-retardant phase-change composites with superior solar-thermal conversion efficiency and highly electromagnetic interference shielding for efficient thermal management

Author

Listed:
  • Yue, Hao
  • Ou, Yangcen
  • Wang, Jiuao
  • Wang, Haibo
  • Du, Zongliang
  • Du, Xiaosheng
  • Cheng, Xu

Abstract

The development of form-stable phase-change material (PCM) with solar-thermal harvest, electromagnetic interference (EMI) shielding, and flame-retardancy is crucial for efficient building energy management and conservation. Herein, novel Ti3C2Tx MXene/delignified wood supported form-stable phase-change composites (PMPCMs) with superior solar-thermal conversion efficiency, highly EMI shielding effects, and excellent flame-retardancy were fabricated by alkaline boiling delignification, ammonium dihydrogen phosphate (ADP) and MXene deposition, and melted n-octadecane impregnation. Benefiting from the powerful surface tension and capillary force of the wood-based support materials, PMPCMs can effectively encapsulate the melted n-alkane molecules and inhibit their leakage. The differential scanning calorimetry results showed that PMPCMs possessed superior n-octadecane encapsulation yield and high thermal energy storage density (166.9–191.6 J/g). Decorating delignified wood by MXene significantly improved the solar-thermal storage efficiency (up to 88.4 %) and EMI shielding performance of PMPCMs. The average EMI shielding effectiveness of PMPCM-10 was enhanced to 34.12 dB in X-band frequency range of 8.2–12.4 GHz. Moreover, with the introduction of the flame-retardant ADP, the peak heat release rate (pHRR) and total heat release (THR) of PMPCMs decreased noticeably, demonstrating the enhanced flame retardancy of delignified wood supported phase-change composites. In summary, PMPCMs exhibited superior application prospects in building energy management and electromagnetic shielding fields.

Suggested Citation

  • Yue, Hao & Ou, Yangcen & Wang, Jiuao & Wang, Haibo & Du, Zongliang & Du, Xiaosheng & Cheng, Xu, 2024. "Ti3C2Tx MXene/delignified wood supported flame-retardant phase-change composites with superior solar-thermal conversion efficiency and highly electromagnetic interference shielding for efficient therm," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028359
    DOI: 10.1016/j.energy.2023.129441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tong, Xuan & Li, Nianqi & Zeng, Min & Wang, Qiuwang, 2019. "Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 398-422.
    2. Ling, Haoshu & Wang, Liang & Chen, Chao & Chen, Haisheng, 2019. "Numerical investigations of optimal phase change material incorporated into ventilated walls," Energy, Elsevier, vol. 172(C), pages 1187-1197.
    3. Li, Chaoen & Yu, Hang & Song, Yuan & Wang, Meng & Liu, Zhiyuan, 2020. "A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage," Renewable Energy, Elsevier, vol. 145(C), pages 1465-1473.
    4. Li, Yuming & Wang, Tingyu & Li, Xinxi & Zhang, Guoqing & Chen, Kai & Yang, Wensheng, 2022. "Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module," Applied Energy, Elsevier, vol. 327(C).
    5. Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Niu, Shaoshuai & Kang, Moyun & Liu, Yuqi & Lin, Wei & Liang, Chenchen & Zhao, Yiqiang & Cheng, Jiaji, 2023. "The preparation and characterization of phase change material microcapsules with multifunctional carbon nanotubes for controlling temperature," Energy, Elsevier, vol. 268(C).
    7. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Ma, Yan & Zou, Minming & Chen, Wenjing & Luo, Wenxing & Hu, Xiaowu & Xiao, Shikun & Luo, Lixiang & Jiang, Xiongxin & Li, Qinglin, 2023. "A structured phase change material integrated by MXene/AgNWs modified dual-network and polyethylene glycol for energy storage and thermal management," Applied Energy, Elsevier, vol. 349(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Mehmet C. Yagci & Thomas Feldmann & Elmar Bollin & Michael Schmidt & Wolfgang G. Bessler, 2022. "Aging Characteristics of Stationary Lithium-Ion Battery Systems with Serial and Parallel Cell Configurations," Energies, MDPI, vol. 15(11), pages 1-19, May.
    3. Liang, Yuntao & Wang, Ting & He, Zhenglong & Sun, Yong & Song, Shuanglin & Cui, Xinfeng & Cao, Yingjiazi, 2023. "High thermal storage capacity phase change microcapsules for heat transfer enhancement through hydroxylated-silanized nano-silicon carbide," Energy, Elsevier, vol. 285(C).
    4. Deng, Jian & Huang, Qiqiu & Li, Xinxi & Zhang, Guoqing & Li, Canbing & Li, Songbo, 2024. "Influence mechanism of battery thermal management with flexible flame retardant composite phase change materials by temperature aging," Renewable Energy, Elsevier, vol. 222(C).
    5. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    6. Pin-Han Chen & Cheng-Han Lee & Jun-Yi Wu & Wei-Sheng Chen, 2023. "Perspectives on Taiwan’s Pathway to Net-Zero Emissions," Sustainability, MDPI, vol. 15(6), pages 1-11, March.
    7. Tatiana Potapenko & Jessica S. Döhler & Francisco Francisco & George Lavidas & Irina Temiz, 2023. "Renewable Energy Potential for Micro-Grid at Hvide Sande," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    8. Rahimi, Elnaz & Babapoor, Aziz & Moradi, Gholamreza & Kalantari, Saba & Monazzam Esmaeelpour, Mohammadreza, 2024. "Personal cooling garments and phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    9. Wang, Ji-Xiang & Qian, Jian & Wang, Ni & Zhang, He & Cao, Xiang & Liu, Feifan & Hao, Guanqiu, 2023. "A scalable micro-encapsulated phase change material and liquid metal integrated composite for sustainable data center cooling," Renewable Energy, Elsevier, vol. 213(C), pages 75-85.
    10. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    11. Reveles-Miranda, María & Ramirez-Rivera, Victor & Pacheco-Catalán, Daniella, 2024. "Hybrid energy storage: Features, applications, and ancillary benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Lechón, Yolanda & Lago, Carmen & Herrera, Israel & Gamarra, Ana Rosa & Pérula, Alberto, 2023. "Carbon benefits of different energy storage alternative end uses. Application to the Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Sarrafha, Hamid & Kasaeian, Alibakhsh & Jahangir, Mohammad Hossein & Taylor, Robert A., 2021. "Transient thermal response of multi-walled carbon nanotube phase change materials in building walls," Energy, Elsevier, vol. 224(C).
    14. Shayan, Mostafa Esmaeili & Najafi, Gholamhassan & Ghobadian, Barat & Gorjian, Shiva & Mamat, Rizalman & Ghazali, Mohd Fairusham, 2022. "Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm," Renewable Energy, Elsevier, vol. 201(P2), pages 179-189.
    15. Chang, Yunwei & Gu, Heng & Yao, Xiaoyan & Qing, Chunyao & Zou, Deqiu, 2024. "Preparation of a novel microencapsulated phase change material (MEPCM)/adipic acid ceramic composite and its thermal performance," Energy, Elsevier, vol. 292(C).
    16. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    17. Kenzhekhanov, Sultan & Memon, Shazim Ali & Adilkhanova, Indira, 2020. "Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate," Energy, Elsevier, vol. 192(C).
    18. Zhang, Ting & Zhang, Tuodi & Zhang, Jing & Zhang, Deyi & Guo, Pengran & Li, Hongxia & Li, Chunlei & Wang, Yi, 2021. "Design of stearic acid/graphene oxide-attapulgite aerogel shape-stabilized phase change materials with excellent thermophysical properties," Renewable Energy, Elsevier, vol. 165(P1), pages 504-513.
    19. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    20. Yang, Ping & Wu, Bo & Tong, Xuan & Zeng, Min & Wang, Qiuwang & Cheng, Zhilong, 2023. "Insight into heat transfer process of graphene aerogel composite phase change material," Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.