IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v162y2022ics1364032122003689.html
   My bibliography  Save this article

A systematic review of the impact of green walls on urban comfort: temperature reduction and noise attenuation

Author

Listed:
  • Oquendo-Di Cosola, V.
  • Olivieri, F.
  • Ruiz-García, L.

Abstract

Achieving sustainable urban development requires a reorientation in the planning, management, and design of cities based on the use of cross-cutting solutions that can systematically address urban problems. The implementation of Nature-based Solutions (NBS) such as green walls in cities contributes to reducing the effects of a systemic issue: climate change. This field of research is constantly evolving, and there is a growing need for systematic analysis to understand the current scenario, identify gaps, and accelerate new lines of research. This review aims to demonstrate the impact of green walls on urban comfort by providing a systematic review of the state of the art in the field of temperature reduction and acoustic absorption, identifying the factors that influence urban comfort through the use of vegetation, and highlighting research gaps that can be further explored. The most relevant results have shown that the temperature reduction is mainly influenced by the shading capacity of the selected vegetation type, the evapotranspiration process of the plants, and the presence of substrate. Also, the acoustic absorption capacity is influenced to a greater extent by the system's configuration, the substrate's characteristics, and the vegetation's density. In both cases, the environmental conditions in which they are found can vary the impact to a greater or lesser extent. The results of this research are relevant for the implementation of green walls as a climate change mitigation tool in cities and the development of new research approaches.

Suggested Citation

  • Oquendo-Di Cosola, V. & Olivieri, F. & Ruiz-García, L., 2022. "A systematic review of the impact of green walls on urban comfort: temperature reduction and noise attenuation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003689
    DOI: 10.1016/j.rser.2022.112463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122003689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jim, C.Y., 2015. "Thermal performance of climber greenwalls: Effects of solar irradiance and orientation," Applied Energy, Elsevier, vol. 154(C), pages 631-643.
    2. Huimin Liu & Qiqiang Li & Guanguan Li & Ran Ding, 2020. "Life Cycle Assessment of Environmental Impact of Steelmaking Process," Complexity, Hindawi, vol. 2020, pages 1-9, December.
    3. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    4. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.
    5. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    6. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    7. Smith, Claire & Levermore, Geoff, 2008. "Designing urban spaces and buildings to improve sustainability and quality of life in a warmer world," Energy Policy, Elsevier, vol. 36(12), pages 4558-4562, December.
    8. Jim, C.Y., 2015. "Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls," Energy, Elsevier, vol. 90(P1), pages 926-938.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karen Takahashi & Gabriela Araújo & Vali Pott & Nídia Yoshida & Liana Lima & Anderson Caires & Paula Paulo, 2022. "Relationship of Photosynthetic Activity of Polygonum acuminatum and Ludwigia lagunae with Physicochemical Aspects of Greywater in a Zero-Liquid Discharge System," Resources, MDPI, vol. 11(10), pages 1-16, September.
    2. Xiaohuan Xie & Yinrong Li & Ruobing Wang & Zhonghua Gou, 2023. "Park Recreation Intention and Satisfaction of Blue-Collar Workers Based on the ACSI Model: A Case Study of Anning Industrial Park in Yunnan," Land, MDPI, vol. 12(4), pages 1-26, March.
    3. Sassenou, L.-N. & Olivieri, L. & Olivieri, F., 2024. "Challenges for positive energy districts deployment: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Puyi Wang & Yew Hoong Wong & Chou Yong Tan & Sheng Li & Wen Tong Chong, 2022. "Vertical Greening Systems: Technological Benefits, Progresses and Prospects," Sustainability, MDPI, vol. 14(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    3. Hankun Lin & Yiqiang Xiao & Florian Musso & Yao Lu, 2019. "Green Façade Effects on Thermal Environment in Transitional Space: Field Measurement Studies and Computational Fluid Dynamics Simulations," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    4. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
    6. Zaloa Azkorra-Larrinaga & Naiara Romero-Antón & Koldobika Martín-Escudero & Gontzal Lopez-Ruiz & Catalina Giraldo-Soto, 2023. "Evaluation of the Thermal Performance of Two Passive Facade System Solutions for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-23, December.
    7. Hussain H. Al-Kayiem & Kelly Koh & Tri W. B. Riyadi & Marwan Effendy, 2020. "A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    8. Ileana Blanco & Fabiana Convertino, 2023. "Thermal Performance of Green Façades: Research Trends Analysis Using a Science Mapping Approach," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    9. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    10. Cuce, Erdem, 2017. "Thermal regulation impact of green walls: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 194(C), pages 247-254.
    11. Jutta Hollands & Azra Korjenic, 2021. "Evaluation and Planning Decision on Façade Greening Made Easy—Integration in BIM and Implementation of an Automated Design Process," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    12. Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
    13. Carley C. Reynolds & Francisco J. Escobedo & Nicola Clerici & Jorge Zea-Camaño, 2017. "Does “Greening” of Neotropical Cities Considerably Mitigate Carbon Dioxide Emissions? The Case of Medellin, Colombia," Sustainability, MDPI, vol. 9(5), pages 1-16, May.
    14. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Mudoh Mbah & Anna Franz, 2021. "Revitalization and Branding of Rural Communities in Cameroon Using a Circular Approach for Sustainable Development—A Proposal for the Batibo Municipality," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    16. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    17. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    18. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    19. Yasser Jezzini & Ghiwa Assaf & Rayan H. Assaad, 2023. "Models and Methods for Quantifying the Environmental, Economic, and Social Benefits and Challenges of Green Infrastructure: A Critical Review," Sustainability, MDPI, vol. 15(9), pages 1-40, May.
    20. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.