IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16705-d1297217.html
   My bibliography  Save this article

Research and Application of Early Identification of Geological Hazards Technology in Railway Disaster Prevention and Control: A Case Study of Southeastern Gansu, China

Author

Listed:
  • Peng He

    (School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
    China Aero Geophysical Survey & Remote Sensing Center for Land, Beijing 100083, China)

  • Zhaocheng Guo

    (China Aero Geophysical Survey & Remote Sensing Center for Land, Beijing 100083, China)

  • Hong Chen

    (China Aero Geophysical Survey & Remote Sensing Center for Land, Beijing 100083, China)

  • Pengqing Shi

    (Gansu Provincial Geological Environment Monitoring Institute, Lanzhou 730050, China)

  • Xiaolong Zhou

    (Gansu Provincial Geological Environment Monitoring Institute, Lanzhou 730050, China)

  • Genhou Wang

    (School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China)

Abstract

Geological hazards significantly threaten the safety of China’s railway network. As the railway system continues to expand, particularly with the effects of accelerated climate change, approximately 70% of the newly encountered geohazards occur outside of known areas. This study proposes a novel approach that can be applied to railway systems to identify potential geohazards, analyze risk areas, and assess section vulnerability. The methodology uses integrated remote sensing technology to effectively enhance potential railway hazard identification timeliness. It combines kernel density, hotspot, and inverse distance-weighted analysis methods to enhance applicability and accuracy in the risk assessment of railway networks. Using a case study in southeastern Gansu as an example, we identified 3976 potential hazards in the study area, analyzed five areas with high concentrations of hazards, and 11 districts and counties prone to disasters that could threaten the railway network. We accurately located 16 sections and 20 significant landslide hazards on eight railway lines that pose operational risks. The effectiveness of the methodology proposed in this paper has been confirmed through field investigations of significant landslide hazards. This study can provide a scientific basis for the sustainability of the railway network and disaster risk management.

Suggested Citation

  • Peng He & Zhaocheng Guo & Hong Chen & Pengqing Shi & Xiaolong Zhou & Genhou Wang, 2023. "Research and Application of Early Identification of Geological Hazards Technology in Railway Disaster Prevention and Control: A Case Study of Southeastern Gansu, China," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16705-:d:1297217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Liu & Senbin Yu & Chaoyang Zhang & Peiran Zhang & Yang Wang & Liang Gao, 2022. "Critical Percolation on Temporal High-Speed Railway Networks," Mathematics, MDPI, vol. 10(24), pages 1-8, December.
    2. Xie, Fengjie & Ma, Mengdi & Ren, Cuiping, 2022. "Research on multilayer network structure characteristics from a higher-order model: The case of a Chinese high-speed railway system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    3. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Shengdong Nie & Hengkai Li, 2023. "Analysis of Construction Networks and Structural Characteristics of Pearl River Delta and Surrounding Cities Based on Multiple Connections," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    5. Calzada-Infante, L. & Adenso-Díaz, B. & García Carbajal, S., 2020. "Analysis of the European international railway network and passenger transfers," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Shohreh Moradi & Hamid Reza Ahadi & Grzegorz Sierpiński, 2023. "Sustainable Management of Railway Companies Amid Inflation and Reduced Government Subsidies: A System Dynamics Approach," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    7. Cuiping Ren & Bianbian Chen & Fengjie Xie & Xuan Zhao & Jiaqian Zhang & Xueyan Zhou, 2022. "Understanding Hazardous Materials Transportation Accidents Based on Higher-Order Network Theory," IJERPH, MDPI, vol. 19(20), pages 1-13, October.
    8. Cai, Kaiquan & Shen, Zhiqi & Luo, Xiaoyan & Li, Yue, 2023. "Temporal attention aware dual-graph convolution network for air traffic flow prediction," Journal of Air Transport Management, Elsevier, vol. 106(C).
    9. Wang, Longjian & Zheng, Shaoya & Wang, Yonggang & Wang, Longfei, 2021. "Identification of critical nodes in multimodal transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    10. Du, Yuxian & Lin, Xi & Pan, Ye & Chen, Zhaoxin & Xia, Huan & Luo, Qian, 2023. "Identifying influential airports in airline network based on failure risk factors with TOPSIS," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    11. Rui Zhang, 2021. "Route planning model of rail transit network facing the railway freight transport deadline," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 718-730, August.
    12. Tang, Zhixing & Huang, Shan & Zhu, Xinping & Pan, Weijun & Han, Songchen & Gong, Tingyu, 2023. "Research on the multilayer structure of flight delay in China air traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    13. Deng, Yue & Wang, Jiaxin & Gao, Chao & Li, Xianghua & Wang, Zhen & Li, Xuelong, 2021. "Assessing temporal–spatial characteristics of urban travel behaviors from multiday smart-card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 576(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16705-:d:1297217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.