IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v586y2022ics0378437121007469.html
   My bibliography  Save this article

Research on multilayer network structure characteristics from a higher-order model: The case of a Chinese high-speed railway system

Author

Listed:
  • Xie, Fengjie
  • Ma, Mengdi
  • Ren, Cuiping

Abstract

In this paper, we integrate the non-Markovian higher-order model with the multilayer network analysis method for the first time to analyse the transportation system with route dependencies. An empirical study on the Chinese high-speed rail (HSR) system was conducted. The non-Markovian higher-order model is used to describe the theoretical high-speed railway network (THSRN), and weighted k-core decomposition is used to divide the THSRN into the core layer, bridge layer and periphery layer. We analyse the importance of cities and HSR routes. Ten important hub cities in the HSR system are discovered, and a finding against the common belief is revealed that the importance rank of cities is not completely consistent with their train flow. In addition, nine complete HSR lines and seven sections of the HSR lines were found to be the most important routes in the HSR system. Finally, the weaknesses of the HSR system are identified and some optimization suggestions are presented. Our work provides important insight for forming a new framework for analysing the transportation systems with route dependencies, which may assist in the future study of transportation systems.

Suggested Citation

  • Xie, Fengjie & Ma, Mengdi & Ren, Cuiping, 2022. "Research on multilayer network structure characteristics from a higher-order model: The case of a Chinese high-speed railway system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
  • Handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007469
    DOI: 10.1016/j.physa.2021.126473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121007469
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ingo Scholtes & Nicolas Wider & René Pfitzner & Antonios Garas & Claudio J. Tessone & Frank Schweitzer, 2014. "Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    2. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Zhang, Jianhua & Hu, Funian & Wang, Shuliang & Dai, Yang & Wang, Yixing, 2016. "Structural vulnerability and intervention of high speed railway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 743-751.
    4. Du, Wen-Bo & Zhou, Xing-Lian & Lordan, Oriol & Wang, Zhen & Zhao, Chen & Zhu, Yan-Bo, 2016. "Analysis of the Chinese Airline Network as multi-layer networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 108-116.
    5. Wang, Lvhua & Liu, Yongxue & Sun, Chao & Liu, Yahui, 2016. "Accessibility impact of the present and future high-speed rail network: A case study of Jiangsu Province, China," Journal of Transport Geography, Elsevier, vol. 54(C), pages 161-172.
    6. Jiao Li & Yongsheng Qian & Junwei Zeng & Fan Yin & Leipeng Zhu & Xiaoping Guang, 2020. "Research on the Influence of a High-Speed Railway on the Spatial Structure of the Western Urban Agglomeration Based on Fractal Theory—Taking the Chengdu–Chongqing Urban Agglomeration as an Example," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    7. Zhang, Hui & Cui, Houdun & Wang, Wei & Song, Wenbo, 2020. "Properties of Chinese railway network: Multilayer structures based on timetable data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    8. Bombelli, Alessandro & Santos, Bruno F. & Tavasszy, Lóránt, 2020. "Analysis of the air cargo transport network using a complex network theory perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    9. Martin Rosvall & Alcides V. Esquivel & Andrea Lancichinetti & Jevin D. West & Renaud Lambiotte, 2014. "Memory in network flows and its effects on spreading dynamics and community detection," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    10. Dai, Liang & Derudder, Ben & Liu, Xingjian, 2018. "The evolving structure of the Southeast Asian air transport network through the lens of complex networks, 1979–2012," Journal of Transport Geography, Elsevier, vol. 68(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen, Lu & Zhang, Nianzu & Yang, Zhiyuan, 2023. "Integrated optimization for high-speed railway express system with multiple modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    2. Wu, Rui-Jie & Kong, Yi-Xiu & Di, Zengru & Zhang, Yi-Cheng & Shi, Gui-Yuan, 2022. "Analytical solution to the k-core pruning process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Yi Liu & Senbin Yu & Chaoyang Zhang & Peiran Zhang & Yang Wang & Liang Gao, 2022. "Critical Percolation on Temporal High-Speed Railway Networks," Mathematics, MDPI, vol. 10(24), pages 1-8, December.
    4. Cuiping Ren & Bianbian Chen & Fengjie Xie & Xuan Zhao & Jiaqian Zhang & Xueyan Zhou, 2022. "Understanding Hazardous Materials Transportation Accidents Based on Higher-Order Network Theory," IJERPH, MDPI, vol. 19(20), pages 1-13, October.
    5. Bo Yang & Yaping Yang & Yangxiaoyue Liu & Xiafang Yue, 2022. "Spatial Structure Evolution and Economic Benefits of Rapidly Expanding the High-Speed Rail Network in Developing Regions: A Case Study in Western China," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    6. Tang, Zhixing & Huang, Shan & Zhu, Xinping & Pan, Weijun & Han, Songchen & Gong, Tingyu, 2023. "Research on the multilayer structure of flight delay in China air traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hui & Cui, Houdun & Wang, Wei & Song, Wenbo, 2020. "Properties of Chinese railway network: Multilayer structures based on timetable data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    2. Yi Liu & Senbin Yu & Chaoyang Zhang & Peiran Zhang & Yang Wang & Liang Gao, 2022. "Critical Percolation on Temporal High-Speed Railway Networks," Mathematics, MDPI, vol. 10(24), pages 1-8, December.
    3. Wang, Longjian & Zheng, Shaoya & Wang, Yonggang & Wang, Longfei, 2021. "Identification of critical nodes in multimodal transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    4. Rui Ding & Jun Fu & Yiming Du & Linyu Du & Tao Zhou & Yilin Zhang & Siwei Shen & Yuqi Zhu & Shihui Chen, 2022. "Structural Evolution and Community Detection of China Rail Transit Route Network," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    5. Tang, Zhixing & Huang, Shan & Zhu, Xinping & Pan, Weijun & Han, Songchen & Gong, Tingyu, 2023. "Research on the multilayer structure of flight delay in China air traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    7. Hu, Yue & Dai, Liang & Fuellhart, Kurt & Witlox, Frank, 2024. "Examining competition among airline regarding route portfolios at domestic hubs under government regulation: The case of China's aviation market," Journal of Air Transport Management, Elsevier, vol. 116(C).
    8. Lawford, Steve & Mehmeti, Yll, 2020. "Cliques and a new measure of clustering: With application to U.S. domestic airlines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    9. Bai, Bingfeng, 2022. "Strategic business management for airport alliance: A complex network approach to simulation robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    10. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    11. Min Su & Baoyang Hu & Yipeng Jiang & Zhenchao Zhang & Zeyang Li, 2022. "Relationship between the Chinese Main Air Transport Network and COVID-19 Pandemic Transmission," Mathematics, MDPI, vol. 10(13), pages 1-17, July.
    12. Bingxue Qian & Ning Zhang, 2022. "Topology and Robustness of Weighted Air Transport Networks in Multi-Airport Region," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    13. Andrew Mellor, 2019. "Event Graphs: Advances And Applications Of Second-Order Time-Unfolded Temporal Network Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-26, May.
    14. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    15. Xu, Wangtu (Ato) & Zhou, Jiangping & Qiu, Guo, 2018. "China's high-speed rail network construction and planning over time: a network analysis," Journal of Transport Geography, Elsevier, vol. 70(C), pages 40-54.
    16. Franch, Fabio & Nocciola, Luca & Vouldis, Angelos, 2024. "Temporal networks and financial contagion," Journal of Financial Stability, Elsevier, vol. 71(C).
    17. Chen, Yu & Lu, Yuqi & Jin, Cheng, 2024. "Spatiotemporal differentiation calendar for car and truck flow on expressways: A case study of Jiangsu, China," Journal of Transport Geography, Elsevier, vol. 116(C).
    18. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    19. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    20. Hu, Xinlei & Huang, Jie & Shi, Feng, 2019. "Circuity in China's high-speed-rail network," Journal of Transport Geography, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.