IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i23p16297-d1287451.html
   My bibliography  Save this article

A Comprehensive Overview of Photovoltaic Technologies and Their Efficiency for Climate Neutrality

Author

Listed:
  • Alexandra Catalina Lazaroiu

    (Department of Measurements, Electrical Devices and Static Converters, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
    University MARITIMA of Constanta, 900663 Constanta, Romania)

  • Mohammed Gmal Osman

    (University MARITIMA of Constanta, 900663 Constanta, Romania
    Doctoral School of Energy Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania)

  • Cristian-Valentin Strejoiu

    (University MARITIMA of Constanta, 900663 Constanta, Romania
    Doctoral School of Energy Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania)

  • Gheorghe Lazaroiu

    (University MARITIMA of Constanta, 900663 Constanta, Romania
    Doctoral School of Energy Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania)

Abstract

Solar photovoltaic (PV) technology is a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. This paper explores the pivotal role of PV technology in reducing greenhouse gas emissions and combatting the pressing issue of climate change. At the heart of its efficacy lies the efficiency of PV materials, which dictates the extent to which sunlight is transformed into electricity. Over the last decade, substantial advancements in PV efficiency have propelled the widespread adoption of solar PV technology on a global scale. The efficiency of PV materials is a critical factor, determining how effectively sunlight is transformed into electricity. Enhanced efficiency, achieved through a decade of progress, has driven the global expansion of solar PV. Multi-junction photovoltaic materials have now exceeded 40% efficiency in lab tests. China leads the world in solar PV installations, boasting over 253 GW of installed capacity by the end of 2021. Other prominent countries in this sector are the United States, Japan, Germany, and India. Photovoltaic (PV) cell technologies are rapidly improving, with efficiencies reaching up to 30% and costs falling below $0.50/W, making PV a competitive source of energy in many countries around the world. Solar PV technology holds immense potential for creating a cleaner, reliable, scalable, and cost-effective electricity system. To expedite its deployment and foster a more sustainable energy future, continued investment in research and development along with supportive policies and market mechanisms is essential. This paper underscores the pivotal role of solar PV technology in the global energy transition and advocates for a concerted effort to unlock its full potential in achieving a more sustainable and resilient energy future.

Suggested Citation

  • Alexandra Catalina Lazaroiu & Mohammed Gmal Osman & Cristian-Valentin Strejoiu & Gheorghe Lazaroiu, 2023. "A Comprehensive Overview of Photovoltaic Technologies and Their Efficiency for Climate Neutrality," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16297-:d:1287451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/23/16297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/23/16297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mostafa Elshahed & Ali M. El-Rifaie & Mohamed A. Tolba & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2022. "An Innovative Hunter-Prey-Based Optimization for Electrically Based Single-, Double-, and Triple-Diode Models of Solar Photovoltaic Systems," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
    2. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luigi Fortuna & Arturo Buscarino, 2022. "Sustainable Energy Systems," Energies, MDPI, vol. 15(23), pages 1-7, December.
    2. Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Multi-objective optimisation of a power generation system integrating solid oxide fuel cell and recuperated supercritical carbon dioxide cycle," Energy, Elsevier, vol. 281(C).
    3. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    4. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    5. Richard Guanoluisa & Diego Arcos-Aviles & Marco Flores-Calero & Wilmar Martinez & Francesc Guinjoan, 2023. "Photovoltaic Power Forecast Using Deep Learning Techniques with Hyperparameters Based on Bayesian Optimization: A Case Study in the Galapagos Islands," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    6. Irene Martínez Reverte & Tomás Gómez-Navarro & Carlos Sánchez-Díaz & Carla Montagud Montalvá, 2022. "Evaluation of Alternatives for Energy Supply from Fuel Cells in Compact Cities in the Mediterranean Climate; Case Study: City of Valencia," Energies, MDPI, vol. 15(12), pages 1-30, June.
    7. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    8. Davide Clematis & Daria Bellotti & Massimo Rivarolo & Loredana Magistri & Antonio Barbucci, 2023. "Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis," Energies, MDPI, vol. 16(16), pages 1-31, August.
    9. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    10. Pivetta, D. & Dall’Armi, C. & Sandrin, P. & Bogar, M. & Taccani, R., 2024. "The role of hydrogen as enabler of industrial port area decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.
    12. Giuseppe De Lorenzo & Francesco Piraino & Francesco Longo & Giovanni Tinè & Valeria Boscaino & Nicola Panzavecchia & Massimo Caccia & Petronilla Fragiacomo, 2022. "Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain," Energies, MDPI, vol. 15(19), pages 1-21, September.
    13. Hao, Xinyang & Salhi, Issam & Laghrouche, Salah & Ait Amirat, Youcef & Djerdir, Abdesslem, 2023. "Multiple inputs multi-phase interleaved boost converter for fuel cell systems applications," Renewable Energy, Elsevier, vol. 204(C), pages 521-531.
    14. Kim, Kyungah & Moon, Sungho & Kim, Junghun, 2023. "How far is it from your home? Strategic policy and management to overcome barriers of introducing fuel-cell power generation facilities," Energy Policy, Elsevier, vol. 182(C).
    15. Marialaura Di Somma & Martina Caliano & Viviana Cigolotti & Giorgio Graditi, 2021. "Investigating Hydrogen-Based Non-Conventional Storage for PV Power in Eco-Energetic Optimization of a Multi-Energy System," Energies, MDPI, vol. 14(23), pages 1-17, December.
    16. Shufu Yuan & Yuzhang Ji & Yongxu Chen & Xin Liu & Weijun Zhang, 2023. "An Improved Differential Evolution for Parameter Identification of Photovoltaic Models," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    17. Jiaping Xie & Chao Wang & Wei Zhu & Hao Yuan, 2021. "A Multi-Stage Fault Diagnosis Method for Proton Exchange Membrane Fuel Cell Based on Support Vector Machine with Binary Tree," Energies, MDPI, vol. 14(20), pages 1-22, October.
    18. Costas Athanasiou & Christos Drosakis & Gaylord Kabongo Booto & Costas Elmasides, 2022. "Economic Feasibility of Power/Heat Cogeneration by Biogas–Solid Oxide Fuel Cell (SOFC) Integrated Systems," Energies, MDPI, vol. 16(1), pages 1-30, December.
    19. Genovese, M. & Piraino, F. & Fragiacomo, P., 2024. "3E analysis of a virtual hydrogen valley supported by railway-based H2 delivery for multi-transportation service," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    20. Viole, Isabelle & Valenzuela-Venegas, Guillermo & Zeyringer, Marianne & Sartori, Sabrina, 2023. "A renewable power system for an off-grid sustainable telescope fueled by solar power, batteries and green hydrogen," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16297-:d:1287451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.