Probabilistic energy consumption analysis in buildings using point estimate method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.10.091
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huang, Jianhua & Gurney, Kevin Robert, 2016. "The variation of climate change impact on building energy consumption to building type and spatiotemporal scale," Energy, Elsevier, vol. 111(C), pages 137-153.
- Liu, Long & Zhao, Jing & Liu, Xin & Wang, Zhaoxia, 2014. "Energy consumption comparison analysis of high energy efficiency office buildings in typical climate zones of China and U.S. based on correction model," Energy, Elsevier, vol. 65(C), pages 221-232.
- Malekpour, Ahmad Reza & Niknam, Taher, 2011. "A probabilistic multi-objective daily Volt/Var control at distribution networks including renewable energy sources," Energy, Elsevier, vol. 36(5), pages 3477-3488.
- Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
- Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
- Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
- Li, Qiong & Meng, Qinglin & Cai, Jiejin & Yoshino, Hiroshi & Mochida, Akashi, 2009. "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, Elsevier, vol. 86(10), pages 2249-2256, October.
- Kipping, A. & Trømborg, E., 2017. "Modeling hourly consumption of electricity and district heat in non-residential buildings," Energy, Elsevier, vol. 123(C), pages 473-486.
- Aien, Morteza & Hajebrahimi, Ali & Fotuhi-Firuzabad, Mahmud, 2016. "A comprehensive review on uncertainty modeling techniques in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1077-1089.
- Zhao, Deyin & Zhong, Ming & Zhang, Xu & Su, Xing, 2016. "Energy consumption predicting model of VRV (Variable refrigerant volume) system in office buildings based on data mining," Energy, Elsevier, vol. 102(C), pages 660-668.
- Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
- Naji, Sareh & Keivani, Afram & Shamshirband, Shahaboddin & Alengaram, U. Johnson & Jumaat, Mohd Zamin & Mansor, Zulkefli & Lee, Malrey, 2016. "Estimating building energy consumption using extreme learning machine method," Energy, Elsevier, vol. 97(C), pages 506-516.
- Soteris A. Kalogirou, 2006. "Artificial neural networks in energy applications in buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 1(3), pages 201-216, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Hangxin & Wang, Shengwei, 2020. "Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties," Applied Energy, Elsevier, vol. 265(C).
- Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
- Scarpa, Federico & Tagliafico, Luca A. & Bianco, Vincenzo, 2021. "Financial and energy performance analysis of efficiency measures in residential buildings. A probabilistic approach," Energy, Elsevier, vol. 236(C).
- Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
- Li, Niansi & Gu, Tao & Xie, Hao & Ji, Jie & Liu, Xiaoyong & Yu, Bendong, 2023. "The kinetic and preliminary performance study on a novel solar photo-thermal catalytic hybrid Trombe-wall," Energy, Elsevier, vol. 269(C).
- Chen, Ruijun & Tsay, Yaw-Shyan & Zhang, Ting, 2023. "A multi-objective optimization strategy for building carbon emission from the whole life cycle perspective," Energy, Elsevier, vol. 262(PA).
- Rouleau, Jean & Gosselin, Louis & Blanchet, Pierre, 2019. "Robustness of energy consumption and comfort in high-performance residential building with respect to occupant behavior," Energy, Elsevier, vol. 188(C).
- Quan Li & Xin Wang & Shuaiang Rong, 2018. "Probabilistic Load Flow Method Based on Modified Latin Hypercube-Important Sampling," Energies, MDPI, vol. 11(11), pages 1-14, November.
- Kaushik Biswas & Rohit Jogineedi & Andre Desjarlais, 2019. "Experimental and Numerical Examination of Naturally-Aged Foam-VIP Composites," Energies, MDPI, vol. 12(13), pages 1-12, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
- Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
- Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
- Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
- Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
- Yan Cao & Towhid Pourrostam & Yousef Zandi & Nebojša Denić & Bogdan Ćirković & Alireza Sadighi Agdas & Abdellatif Selmi & Vuk Vujović & Kittisak Jermsittiparsert & Momir Milic, 2021. "RETRACTED ARTICLE: Analyzing the energy performance of buildings by neuro-fuzzy logic based on different factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17349-17373, December.
- Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
- Kwok Wai Mui & Ling Tim Wong & Manoj Kumar Satheesan & Anjana Balachandran, 2021. "A Hybrid Simulation Model to Predict the Cooling Energy Consumption for Residential Housing in Hong Kong," Energies, MDPI, vol. 14(16), pages 1-18, August.
- Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
- Ramya Kuppusamy & Srete Nikolovski & Yuvaraja Teekaraman, 2023. "Review of Machine Learning Techniques for Power Quality Performance Evaluation in Grid-Connected Systems," Sustainability, MDPI, vol. 15(20), pages 1-29, October.
- Paiho, Satu & Kiljander, Jussi & Sarala, Roope & Siikavirta, Hanne & Kilkki, Olli & Bajpai, Arpit & Duchon, Markus & Pahl, Marc-Oliver & Wüstrich, Lars & Lübben, Christian & Kirdan, Erkin & Schindler,, 2021. "Towards cross-commodity energy-sharing communities – A review of the market, regulatory, and technical situation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Geyer, Philipp & Singaravel, Sundaravelpandian, 2018. "Component-based machine learning for performance prediction in building design," Applied Energy, Elsevier, vol. 228(C), pages 1439-1453.
- Chalal, Moulay Larbi & Benachir, Medjdoub & White, Michael & Shrahily, Raid, 2016. "Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 761-776.
- Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
- Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
- Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
- Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
- Filippín, Celina & Ricard, Florencia & Flores Larsen, Silvana & Santamouris, Mattheos, 2017. "Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change," Renewable Energy, Elsevier, vol. 101(C), pages 1226-1241.
More about this item
Keywords
Energy efficiency; Energy consumption analysis; Energy cost; Thermal comfort; Two-point estimate method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:716-722. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.