IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p15007-d1262131.html
   My bibliography  Save this article

A Scenario Generation Method for Typical Operations of Power Systems with PV Integration Considering Weather Factors

Author

Listed:
  • Xinghua Wang

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Xixian Liu

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Fucheng Zhong

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Zilv Li

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Kaiguo Xuan

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Zhuoli Zhao

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

Abstract

Under the background of large-scale PV (photovoltaic) integration, generating typical operation scenarios of power systems is of great significance for studying system planning operation and electricity markets. Since the uncertainty of PV output and system load is driven by weather factors to some extent, using PV output, system load, and weather data can allow constructing scenarios more accurately. In this study, we used a TimeGAN (time-series generative adversarial network) based on LSTM (long short-term memory) to generate PV output, system load, and weather data. After classifying the generated data using the k-means algorithm, we associated PV output scenarios and load scenarios using the FP-growth algorithm (an association rule mining algorithm), which effectively generated typical scenarios with weather correlations. In this case study, it can be seen that TimeGAN, unlike other GANs, could capture the temporal features of time-series data and performed better than the other examined GANs. The finally generated typical scenario sets also showed interpretable weather correlations.

Suggested Citation

  • Xinghua Wang & Xixian Liu & Fucheng Zhong & Zilv Li & Kaiguo Xuan & Zhuoli Zhao, 2023. "A Scenario Generation Method for Typical Operations of Power Systems with PV Integration Considering Weather Factors," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15007-:d:1262131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/15007/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/15007/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Hongming & Liang, Rui & Yuan, Yuan & Chen, Bowen & Xiang, Sheng & Liu, Junpeng & Zhao, Huan & Ackom, Emmanuel, 2022. "Distributionally robust optimal dispatch in the power system with high penetration of wind power based on net load fluctuation data," Applied Energy, Elsevier, vol. 313(C).
    2. Kong, Xiangyu & Xiao, Jie & Liu, Dehong & Wu, Jianzhong & Wang, Chengshan & Shen, Yu, 2020. "Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties," Applied Energy, Elsevier, vol. 279(C).
    3. Zhixin Pan & Jianming Wang & Wenlong Liao & Haiwen Chen & Dong Yuan & Weiping Zhu & Xin Fang & Zhen Zhu, 2019. "Data-Driven EV Load Profiles Generation Using a Variational Auto-Encoder," Energies, MDPI, vol. 12(5), pages 1-15, March.
    4. Chunhui Yuan & Haitao Yang, 2019. "Research on K-Value Selection Method of K-Means Clustering Algorithm," J, MDPI, vol. 2(2), pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Hailun & Eames, Matt & Mylona, Anastasia & Davies, Hywel & Challenor, Peter, 2024. "Creating granular climate zones for future-proof building design in the UK," Applied Energy, Elsevier, vol. 357(C).
    2. Navid Shirzadi & Hadise Rasoulian & Fuzhan Nasiri & Ursula Eicker, 2022. "Resilience Enhancement of an Urban Microgrid during Off-Grid Mode Operation Using Critical Load Indicators," Energies, MDPI, vol. 15(20), pages 1-15, October.
    3. Huo, Zhihong & Xu, Chang, 2022. "Distributed cooperative automatic generation control and multi-event triggered mechanisms co-design for networked wind-integrated power systems," Renewable Energy, Elsevier, vol. 193(C), pages 41-56.
    4. Silva, Walquiria N. & Bandória, Luís H.T. & Dias, Bruno H. & de Almeida, Madson C. & de Oliveira, Leonardo W., 2023. "Generating realistic load profiles in smart grids: An approach based on nonlinear independent component estimation (NICE) and convolutional layers," Applied Energy, Elsevier, vol. 351(C).
    5. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    6. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    7. Yunhwan Kim, 2023. "Exploring Organizational Self-(re)presentations on Visual Social Media: Computational Analysis of Startups’ Instagram Photos Based on Unsupervised Learning," SAGE Open, , vol. 13(4), pages 21582440231, December.
    8. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    9. Heller, Yuval & Tubul, Itay, 2023. "Strategies in the repeated prisoner’s dilemma: A cluster analysis," MPRA Paper 117444, University Library of Munich, Germany.
    10. Li, Jinchao & Sun, Zihao & Niu, Xiaoxuan & Li, Shiwei, 2024. "Economic optimization scheduling of virtual power plants considering an incentive based tiered carbon price," Energy, Elsevier, vol. 305(C).
    11. Chao Yan & Yao Yan & Zhiyu Wan & Ziqi Zhang & Larsson Omberg & Justin Guinney & Sean D. Mooney & Bradley A. Malin, 2022. "A Multifaceted benchmarking of synthetic electronic health record generation models," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Xuejiao Gong & Bo Tang & Ruijin Zhu & Wenlong Liao & Like Song, 2020. "Data Augmentation for Electricity Theft Detection Using Conditional Variational Auto-Encoder," Energies, MDPI, vol. 13(17), pages 1-14, August.
    13. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on a Hierarchical Clustering Application in a Virtual Power Plant: Detection of Specific Working Conditions from Power Quality Data," Energies, MDPI, vol. 14(4), pages 1-13, February.
    14. Leogrande, Angelo & Drago, Carlo & Arnone, Massimo, 2024. "Analyzing Regional Disparities in E-Commerce Adoption Among Italian SMEs: Integrating Machine Learning Clustering and Predictive Models with Econometric Analysis," MPRA Paper 122115, University Library of Munich, Germany.
    15. Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Wang, Bowen & Wang, Dongzhe & Shang, Jingru & Zhao, Yiru, 2024. "Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition," Energy, Elsevier, vol. 302(C).
    16. Cuomo, Maria Teresa & Tortora, Debora & Colosimo, Ivan & Ricciardi Celsi, Lorenzo & Genovino, Cinzia & Festa, Giuseppe & La Rocca, Michele, 2023. "Segmenting with big data analytics and Python: A quantitative exploratory analysis of household savings," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    17. Tan, Mao & Li, Zibin & Su, Yongxin & Ren, Yuling & Wang, Ling & Wang, Rui, 2024. "Dual time-scale robust optimization for energy management of distributed energy community considering source-load uncertainty," Renewable Energy, Elsevier, vol. 226(C).
    18. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    19. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements," Energies, MDPI, vol. 14(4), pages 1-14, February.
    20. Liu, Fan & Duan, Jiandong & Wu, Chen & Tian, Qinxing, 2024. "Risk-averse distributed optimization for integrated electricity-gas systems considering uncertainties of Wind-PV and power-to-gas," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15007-:d:1262131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.