IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924011164.html
   My bibliography  Save this article

Characterization and application of flexible operation region of virtual power plant

Author

Listed:
  • Ren, Junzhi
  • Zeng, Yuan
  • Qin, Chao
  • Li, Bao
  • Wang, Ziqiang
  • Yuan, Quan
  • Zhai, Hefeng
  • Li, Peng

Abstract

The construction of a virtual power plant (VPP) represents a powerful approach for harnessing the adjustable capacity of flexible resources. VPP actively participates in transmission network dispatching by aggregating these flexible resources. However, existing practical implementations and research cannot describe the influence of renewable energy's inherent unpredictability on the dispatching boundaries of VPPs. This shortfall leads to a lack of organic coordination between flexible resources and the power transmission network. Therefore, this paper suggests a way to characterize the dispatching boundaries of VPPs based on the concept of flexible operation region (FOR), aiming to better incorporate the flexible resources of decentralized access and lessen the issue of insufficient computing power caused by unified optimization. Initially, an analytical model for the VPP's FOR is presented, followed by dimensionality reduction of the FOR to the VPP's gateway. Subsequently, participation in transmission network scheduling is facilitated using an equivalent dimensionality reduction model. Based on standard example testing, the proposed method's effectiveness and accuracy have been verified in this paper.

Suggested Citation

  • Ren, Junzhi & Zeng, Yuan & Qin, Chao & Li, Bao & Wang, Ziqiang & Yuan, Quan & Zhai, Hefeng & Li, Peng, 2024. "Characterization and application of flexible operation region of virtual power plant," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011164
    DOI: 10.1016/j.apenergy.2024.123733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2022. "Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy," Applied Energy, Elsevier, vol. 314(C).
    2. Oshnoei, Arman & Kheradmandi, Morteza & Blaabjerg, Frede & Hatziargyriou, Nikos D. & Muyeen, S.M. & Anvari-Moghaddam, Amjad, 2022. "Coordinated control scheme for provision of frequency regulation service by virtual power plants," Applied Energy, Elsevier, vol. 325(C).
    3. Kong, Xiangyu & Xiao, Jie & Liu, Dehong & Wu, Jianzhong & Wang, Chengshan & Shen, Yu, 2020. "Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties," Applied Energy, Elsevier, vol. 279(C).
    4. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    5. Fan, Shuai & Liu, Jiang & Wu, Qing & Cui, Mingjian & Zhou, Huan & He, Guangyu, 2020. "Optimal coordination of virtual power plant with photovoltaics and electric vehicles: A temporally coupled distributed online algorithm," Applied Energy, Elsevier, vol. 277(C).
    6. Wu, Yunyun & Fang, Jiakun & Ai, Xiaomeng & Xue, Xizhen & Cui, Shichang & Chen, Xia & Wen, Jinyu, 2023. "Robust co-planning of AC/DC transmission network and energy storage considering uncertainty of renewable energy," Applied Energy, Elsevier, vol. 339(C).
    7. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).
    8. Park, Sung-Won & Son, Sung-Yong, 2020. "Interaction-based virtual power plant operation methodology for distribution system operator’s voltage management," Applied Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    2. Li, Jiaxin & Xu, Zhanbo & Zhou, Yuzhou & Li, Yuting & Wu, Jiang & Guan, Xiaohong, 2024. "Optimal scheduling method and fast-solving algorithm for large-scale virtual power plants communication networks," Applied Energy, Elsevier, vol. 371(C).
    3. Meng, Yuan & Qiu, Jing & Zhang, Cuo & Lei, Gang & Zhu, Jianguo, 2024. "A Holistic P2P market for active and reactive energy trading in VPPs considering both financial benefits and network constraints," Applied Energy, Elsevier, vol. 356(C).
    4. Esfahani, Moein & Alizadeh, Ali & Amjady, Nima & Kamwa, Innocent, 2024. "A distributed VPP-integrated co-optimization framework for energy scheduling, frequency regulation, and voltage support using data-driven distributionally robust optimization with Wasserstein metric," Applied Energy, Elsevier, vol. 361(C).
    5. Lu, Xin & Qiu, Jing & Zhang, Cuo & Lei, Gang & Zhu, Jianguo, 2024. "Seizing unconventional arbitrage opportunities in virtual power plants: A profitable and flexible recruitment approach," Applied Energy, Elsevier, vol. 358(C).
    6. Xiong, Chang & Su, Yixin & Wang, Hao & Dong, Zhengcheng & Tian, Meng & Shi, Binghua, 2024. "Consensus-based decentralized scheduling method for collaborative operation in seaport virtual power plant," Applied Energy, Elsevier, vol. 373(C).
    7. Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
    8. Wang, Yanjia & Xu, Chao & Xie, Da & Gu, Chenghong & Zhao, Pengfei & Gong, Jinxia & Pan, Mingjie & Wang, Xitian, 2023. "A novel scheduling strategy for virtual power plant based on power market dynamic triggers," Applied Energy, Elsevier, vol. 350(C).
    9. Guixing Yang & Haoran Liu & Weiqing Wang & Junru Chen & Shunbo Lei, 2023. "Distributed Optimal Coordination of a Virtual Power Plant with Residential Regenerative Electric Heating Systems," Energies, MDPI, vol. 16(11), pages 1-15, May.
    10. Mei Cai & Suqiong Hu & Ya Wang & Jingmei Xiao, 2022. "A Dynamic Social Network Matching Model for Virtual Power Plants and Distributed Energy Resources with Probabilistic Linguistic Information," Sustainability, MDPI, vol. 14(22), pages 1-33, November.
    11. Catra Indra Cahyadi & Suwarno Suwarno & Aminah Asmara Dewi & Musri Kona & Muhammad Arif & Muhammad Caesar Akbar, 2023. "Solar Prediction Strategy for Managing Virtual Power Stations," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 503-512, July.
    12. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    13. Xue, Lin & Zhang, Yao & Wang, Jianxue & Li, Haotian & Li, Fangshi, 2024. "Privacy-preserving multi-level co-regulation of VPPs via hierarchical safe deep reinforcement learning," Applied Energy, Elsevier, vol. 371(C).
    14. Francesco Gulotta & Edoardo Daccò & Alessandro Bosisio & Davide Falabretti, 2023. "Opening of Ancillary Service Markets to Distributed Energy Resources: A Review," Energies, MDPI, vol. 16(6), pages 1-25, March.
    15. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    16. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    17. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    18. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    19. Jiang, Tao & Wu, Chenghao & Huang, Tao & Zhang, Rufeng & Li, Xue, 2024. "Optimal market participation of VPPs in TSO-DSO coordinated energy and flexibility markets," Applied Energy, Elsevier, vol. 360(C).
    20. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.