IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4291-d401055.html
   My bibliography  Save this article

Data Augmentation for Electricity Theft Detection Using Conditional Variational Auto-Encoder

Author

Listed:
  • Xuejiao Gong

    (Electric Engineering College, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China)

  • Bo Tang

    (Electric Engineering College, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China)

  • Ruijin Zhu

    (Electric Engineering College, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China)

  • Wenlong Liao

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Like Song

    (Maintenance Branch of State Grid Jibei Electric Power Co., Ltd., Beijing 102488, China)

Abstract

Due to the strong concealment of electricity theft and the limitation of inspection resources, the number of power theft samples mastered by the power department is insufficient, which limits the accuracy of power theft detection. Therefore, a data augmentation method for electricity theft detection based on the conditional variational auto-encoder (CVAE) is proposed. Firstly, the stealing power curves are mapped into low dimensional latent variables by using the encoder composed of convolutional layers, and the new stealing power curves are reconstructed by the decoder composed of deconvolutional layers. Then, five typical attack models are proposed, and the convolutional neural network is constructed as a classifier according to the data characteristics of stealing power curves. Finally, the effectiveness and adaptability of the proposed method is verified by a smart meters’ data set from London. The simulation results show that the CVAE can take into account the shapes and distribution characteristics of samples at the same time, and the generated stealing power curves have the best effect on the performance improvement of the classifier than the traditional augmentation methods such as the random oversampling method, synthetic minority over-sampling technique, and conditional generative adversarial network. Moreover, it is suitable for different classifiers.

Suggested Citation

  • Xuejiao Gong & Bo Tang & Ruijin Zhu & Wenlong Liao & Like Song, 2020. "Data Augmentation for Electricity Theft Detection Using Conditional Variational Auto-Encoder," Energies, MDPI, vol. 13(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4291-:d:401055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhixin Pan & Jianming Wang & Wenlong Liao & Haiwen Chen & Dong Yuan & Weiping Zhu & Xin Fang & Zhen Zhu, 2019. "Data-Driven EV Load Profiles Generation Using a Variational Auto-Encoder," Energies, MDPI, vol. 12(5), pages 1-15, March.
    2. Ahmad, Tanveer & Chen, Huanxin & Wang, Jiangyu & Guo, Yabin, 2018. "Review of various modeling techniques for the detection of electricity theft in smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2916-2933.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Mahdi Khodayar & Jacob Regan, 2023. "Deep Neural Networks in Power Systems: A Review," Energies, MDPI, vol. 16(12), pages 1-38, June.
    3. Benish Kabir & Umar Qasim & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Emad A. Mohammed, 2022. "Detecting Nontechnical Losses in Smart Meters Using a MLP-GRU Deep Model and Augmenting Data via Theft Attacks," Sustainability, MDPI, vol. 14(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Toledo-Orozco & Carlos Arias-Marin & Carlos Álvarez-Bel & Diego Morales-Jadan & Javier Rodríguez-García & Eddy Bravo-Padilla, 2021. "Innovative Methodology to Identify Errors in Electric Energy Measurement Systems in Power Utilities," Energies, MDPI, vol. 14(4), pages 1-23, February.
    2. Netzah Calamaro & Yuval Beck & Ran Ben Melech & Doron Shmilovitz, 2021. "An Energy-Fraud Detection-System Capable of Distinguishing Frauds from Other Energy Flow Anomalies in an Urban Environment," Sustainability, MDPI, vol. 13(19), pages 1-38, September.
    3. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    4. Silva, Walquiria N. & Bandória, Luís H.T. & Dias, Bruno H. & de Almeida, Madson C. & de Oliveira, Leonardo W., 2023. "Generating realistic load profiles in smart grids: An approach based on nonlinear independent component estimation (NICE) and convolutional layers," Applied Energy, Elsevier, vol. 351(C).
    5. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    6. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
    7. Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Klaudiusz Borkowski & Elżbieta Jasińska, 2020. "The Application of Hierarchical Clustering to Power Quality Measurements in an Electrical Power Network with Distributed Generation," Energies, MDPI, vol. 13(9), pages 1-19, May.
    8. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    9. Yang, Kaixiang & Chen, Wuxing & Bi, Jichao & Wang, Mengzhi & Luo, Fengji, 2023. "Multi-view broad learning system for electricity theft detection," Applied Energy, Elsevier, vol. 352(C).
    10. Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.
    11. Xiaoquan Lu & Yu Zhou & Zhongdong Wang & Yongxian Yi & Longji Feng & Fei Wang, 2019. "Knowledge Embedded Semi-Supervised Deep Learning for Detecting Non-Technical Losses in the Smart Grid," Energies, MDPI, vol. 12(18), pages 1-18, September.
    12. Michel Noussan & Francesco Neirotti, 2020. "Cross-Country Comparison of Hourly Electricity Mixes for EV Charging Profiles," Energies, MDPI, vol. 13(10), pages 1-14, May.
    13. Dadiana-Valeria Căiman & Toma-Leonida Dragomir, 2020. "A Novel Method for Obtaining the Signature of Household Consumer Pairs," Energies, MDPI, vol. 13(22), pages 1-20, November.
    14. Agyekum, Ephraim Bonah & Amjad, Fahd & Mohsin, Muhammad & Ansah, Michael Nii Sanka, 2021. "A bird's eye view of Ghana's renewable energy sector environment: A Multi-Criteria Decision-Making approach," Utilities Policy, Elsevier, vol. 70(C).
    15. Semen Uimonen & Matti Lehtonen, 2020. "Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data," Energies, MDPI, vol. 13(21), pages 1-16, October.
    16. Razavi, Rouzbeh & Gharipour, Amin & Fleury, Martin & Akpan, Ikpe Justice, 2019. "A practical feature-engineering framework for electricity theft detection in smart grids," Applied Energy, Elsevier, vol. 238(C), pages 481-494.
    17. Rubén González Rodríguez & Jamer Jiménez Mares & Christian G. Quintero M., 2020. "Computational Intelligent Approaches for Non-Technical Losses Management of Electricity," Energies, MDPI, vol. 13(9), pages 1-25, May.
    18. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Xinghua Wang & Xixian Liu & Fucheng Zhong & Zilv Li & Kaiguo Xuan & Zhuoli Zhao, 2023. "A Scenario Generation Method for Typical Operations of Power Systems with PV Integration Considering Weather Factors," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    20. Fernando de Souza Savian & Julio Cezar Mairesse Siluk & Tai s Bisognin Garlet & Felipe Moraes do Nascimento & Jose Renes Pinheiro & Zita Vale, 2022. "Non-technical Losses in Brazil: Overview, Challenges, and Directions for Identification and Mitigation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 93-107, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4291-:d:401055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.