IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14643-d1256185.html
   My bibliography  Save this article

Soil Microbiome: Diversity, Benefits and Interactions with Plants

Author

Listed:
  • Poonam Chauhan

    (ICFRE-Himalayan Forest Research Institute, Shimla 171013, Himachal Pradesh, India)

  • Neha Sharma

    (ICFRE-Himalayan Forest Research Institute, Shimla 171013, Himachal Pradesh, India)

  • Ashwani Tapwal

    (ICFRE-Himalayan Forest Research Institute, Shimla 171013, Himachal Pradesh, India)

  • Ajay Kumar

    (ICFRE-Himalayan Forest Research Institute, Shimla 171013, Himachal Pradesh, India)

  • Gaurav Swaroop Verma

    (ICFRE-Himalayan Forest Research Institute, Shimla 171013, Himachal Pradesh, India)

  • Mukesh Meena

    (Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India)

  • Chandra Shekhar Seth

    (Department of Botany, University of Delhi, New Delhi 110007, India)

  • Prashant Swapnil

    (School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda 151401, Punjab, India)

Abstract

Plant roots aid the growth and functions of several kinds of microorganisms such as plant growth-promoting rhizobacteria, mycorrhizal fungi, endophytic bacteria, actinomycetes, nematodes, protozoans which may impart significant impacts on plant health and growth. Plant soil–microbe interaction is an intricate, continuous, and dynamic process that occurs in a distinct zone known as the rhizosphere. Plants interact with these soil microbes in a variety of ways, including competitive, exploitative, neutral, commensal, and symbiotic relationships. Both plant and soil types were found to have an impact on the community diversity and structure of the rhizosphere, or vice versa. The diversity of microorganisms in soil is thought to be essential for the management of soil health and quality because it has different plant growth-promoting or biocontrol effects that could be very advantageous for the host plant and alter plant physiology and nutrition. The composition of microbial community is influenced by soil and plant type. Besides these beneficial microbes, the soil also harbors microorganisms that are detrimental to plants, competing for nutrients and space, and causing diseases. Numerous microorganisms have antagonistic activity and the ability to defend plants from soil-borne diseases. The study of the soil microbiome is essential for formulating strategies for transforming the rhizosphere to the benefit of the plants. This review pays special emphasis on the types of microbial populations in the soil and how they influence plant growth, nutrient acquisition, inter-relationships between soil microbes and plants, stress resistance, carbon sequestration, and phytoremediation.

Suggested Citation

  • Poonam Chauhan & Neha Sharma & Ashwani Tapwal & Ajay Kumar & Gaurav Swaroop Verma & Mukesh Meena & Chandra Shekhar Seth & Prashant Swapnil, 2023. "Soil Microbiome: Diversity, Benefits and Interactions with Plants," Sustainability, MDPI, vol. 15(19), pages 1-43, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14643-:d:1256185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahul Kumar & Prashant Swapnil & Mukesh Meena & Shweta Selpair & Bal Govind Yadav, 2022. "Plant Growth-Promoting Rhizobacteria (PGPR): Approaches to Alleviate Abiotic Stresses for Enhancement of Growth and Development of Medicinal Plants," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    2. Colin Averill & Benjamin L. Turner & Adrien C. Finzi, 2014. "Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage," Nature, Nature, vol. 505(7484), pages 543-545, January.
    3. Richard D. Bardgett & Wim H. van der Putten, 2014. "Belowground biodiversity and ecosystem functioning," Nature, Nature, vol. 515(7528), pages 505-511, November.
    4. Hema Chandran & Mukesh Meena & Prashant Swapnil, 2021. "Plant Growth-Promoting Rhizobacteria as a Green Alternative for Sustainable Agriculture," Sustainability, MDPI, vol. 13(19), pages 1-30, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rimas Meištininkas & Irena Vaškevičienė & Agnieszka I. Piotrowicz-Cieślak & Magdalena Krupka & Jūratė Žaltauskaitė, 2024. "Sustainable Recovery of the Health of Soil with Old Petroleum Hydrocarbon Contamination through Individual and Microorganism-Assisted Phytoremediation with Lotus corniculatus," Sustainability, MDPI, vol. 16(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andleeb Zehra & Mukesh Meena & Dhanaji M. Jadhav & Prashant Swapnil & Harish, 2023. "Regulatory Mechanisms for the Conservation of Endangered Plant Species, Chlorophytum tuberosum —Potential Medicinal Plant Species," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    2. Guoyong Yan & Chunnan Fan & Junqiang Zheng & Guancheng Liu & Jinghua Yu & Zhongling Guo & Wei Cao & Lihua Wang & Wenjie Wang & Qingfan Meng & Junhui Zhang & Yan Li & Jinping Zheng & Xiaoyang Cui & Xia, 2024. "Forest carbon stocks increase with higher dominance of ectomycorrhizal trees in high latitude forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yinhong Hu & Weiwei Yu & Bowen Cui & Yuanyuan Chen & Hua Zheng & Xiaoke Wang, 2021. "Pavement Overrides the Effects of Tree Species on Soil Bacterial Communities," IJERPH, MDPI, vol. 18(4), pages 1-11, February.
    4. Tiziano Gomiero, 2015. "Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits," Sustainability, MDPI, vol. 7(7), pages 1-31, June.
    5. Monika Vilkiene & Ieva Mockeviciene & Grazina Kadziene & Danute Karcauskiene & Regina Repsiene & Ona Auskalniene, 2023. "Bacterial Communities: Interaction to Abiotic Conditions under Effect of Anthropogenic Pressure," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    6. Yongwei Zhou & Changhai Liu & Ning Ai & Xianghui Tuo & Zhiyong Zhang & Rui Gao & Jiafeng Qin & Caixia Yuan, 2022. "Characteristics of Soil Macrofauna and Its Coupling Relationship with Environmental Factors in the Loess Area of Northern Shaanxi," Sustainability, MDPI, vol. 14(5), pages 1-14, February.
    7. Lei Wang & Xiaobo Huang & Jianrong Su, 2022. "Tree Species Diversity and Stand Attributes Differently Influence the Ecosystem Functions of Pinus yunnanensis Secondary Forests under the Climate Context," Sustainability, MDPI, vol. 14(14), pages 1-12, July.
    8. Angela Yaneth Landínez-Torres & Jessika Lucia Becerra Abril & Solveig Tosi & Lidia Nicola, 2020. "Soil Microfungi of the Colombian Natural Regions," IJERPH, MDPI, vol. 17(22), pages 1-28, November.
    9. Zhengkun Hu & Manuel Delgado-Baquerizo & Nicolas Fanin & Xiaoyun Chen & Yan Zhou & Guozhen Du & Feng Hu & Lin Jiang & Shuijin Hu & Manqiang Liu, 2024. "Nutrient-induced acidification modulates soil biodiversity-function relationships," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. David Pires & Valeria Orlando & Raymond L. Collett & David Moreira & Sofia R. Costa & Maria L. Inácio, 2023. "Linking Nematode Communities and Soil Health under Climate Change," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    11. Anita Zapałowska & Andrzej Skwiercz & Dawid Kozacki & Czesław Puchalski, 2024. "Employing Plant Parasitic Nematodes as an Indicator for Assessing Advancements in Landfill Remediation," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
    12. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    13. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    14. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Wojciech Bierza & Joanna Czarnecka & Agnieszka Błońska & Agnieszka Kompała-Bąba & Agnieszka Hutniczak & Bartosz Jendrzejek & Jawdat Bakr & Andrzej M. Jagodziński & Dariusz Prostański & Gabriela Woźnia, 2023. "Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    16. Sowmya Vanama & Maruthi Pesari & Gobinath Rajendran & Uma Devi Gali & Santosha Rathod & Rajanikanth Panuganti & Srivalli Chilukuri & Kannan Chinnaswami & Sumit Kumar & Tatiana Minkina & Estibaliz Sans, 2023. "Correlation of the Effect of Native Bioagents on Soil Properties and Their Influence on Stem Rot Disease of Rice," Sustainability, MDPI, vol. 15(15), pages 1-22, July.
    17. Qiuju Wang & Xin Liu & Jingyang Li & Xiaoyu Yang & Zhenhua Guo, 2021. "Straw application and soil organic carbon change: A meta-analysis," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(2), pages 112-120.
    18. Claudia Melis & Per-Arvid Wold & Anna Maria Billing & Kathrine Bjørgen & Børge Moe, 2020. "Kindergarten Children’s Perception about the Ecological Roles of Living Organisms," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    19. Jonas Inkotte & Barbara Bomfim & Márcio Gonçalves da Rosa & Marco Bruno Xavier Valadão & Alcides Gatto & Juscelina Arcanjo Santos & Reginaldo Sergio Pereira, 2024. "Changes in Land Use through Eucalyptus Plantations Impact Soil Fauna Communities in Brazilian Savannas," Sustainability, MDPI, vol. 16(7), pages 1-14, April.
    20. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14643-:d:1256185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.