IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i6p4820-d1091996.html
   My bibliography  Save this article

Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China

Author

Listed:
  • Chen Ma

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

  • Runze Nie

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

  • Guoming Du

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

Abstract

Land degradation in black soil regions has a significant effect on belowground systems, and Collembolans can adequately indicate environmental changes in the soil. However, there is currently a knowledge gap in the literature regarding the responses of soil Collembolans to land degradation. In order to better understand this issue, in this study, a total of 180 soil Collembolan samples were collected from four habitats with varying degrees of land degradation in the Songnen Plain, namely a no land-degradation habitat (NLD), light land-degradation habitat (LLD), moderate land-degradation habitat (MLD) and severe land-degradation habitat (SLD). The results reveal that the different degrees of land degradation caused some differences in the taxonomic composition of the Collembolans; however, the majority of the Collembolan species are distributed relatively evenly. Proisotoma minima are always a dominant species during the study period. Seasonal variations are observed in the abundance, richness and diversity levels. In the severe land-degradation habitats (SLD), the abundance, richness, diversity and community complexity of the Collembolans are aways at the lowest levels. In addition, Proisotoma minima is negatively correlated with a majority of the species of Collembolans in the low levels of the land-degradation habitats, whereas they are positively correlated with most of the other species in the high levels. Epedaphic and euedaphic Collembolans responded to land degradation more obviously. The structural equation model (SEM) displays that soil Collembolan communities respond negatively to land degradation. Overall, our results provide implications that soil Collembolan communities are affected by land degradation, and that different taxa of soil Collembolans respond to degradation in numerous ways.

Suggested Citation

  • Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:4820-:d:1091996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/6/4820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/6/4820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Author Correction: Global land change from 1982 to 2016," Nature, Nature, vol. 563(7732), pages 26-26, November.
    2. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    3. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    4. Marco Keiluweit & Jeremy J. Bougoure & Peter S. Nico & Jennifer Pett-Ridge & Peter K. Weber & Markus Kleber, 2015. "Mineral protection of soil carbon counteracted by root exudates," Nature Climate Change, Nature, vol. 5(6), pages 588-595, June.
    5. Richard D. Bardgett & Wim H. van der Putten, 2014. "Belowground biodiversity and ecosystem functioning," Nature, Nature, vol. 515(7528), pages 505-511, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Ma & Xin Yao & Guoming Du, 2024. "Effects of Soil Quality Decline on Soil-Dwelling Mesofaunal Communities in Agricultural Lands of the Mollisols Region, China," Agriculture, MDPI, vol. 14(5), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    3. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    4. Wei Fan & Xiankun Yang & Shirong Cai & Haidong Ou & Tao Zhou & Dakang Wang, 2024. "Land-Use/Cover Change and Driving Forces in the Pan-Pearl River Basin during the Period 1985–2020," Land, MDPI, vol. 13(6), pages 1-26, June.
    5. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    6. Min Wang & Kongtao Qin & Yanhong Jia & Xiaohan Yuan & Shuqi Yang, 2022. "Land Use Transition and Eco-Environmental Effects in Karst Mountain Area Based on Production-Living-Ecological Space: A Case Study of Longlin Multinational Autonomous County, Southwest China," IJERPH, MDPI, vol. 19(13), pages 1-23, June.
    7. Xiaotong Wang & Jiazheng Han & Jian Lin, 2022. "Response of Land Use and Net Primary Productivity to Coal Mining: A Case Study of Huainan City and Its Mining Areas," Land, MDPI, vol. 11(7), pages 1-16, June.
    8. Yuji Hara & Chizuko Hirai & Yuki Sampei, 2022. "Mapping Uncounted Anthropogenic Fill Flows: Environmental Impact and Mitigation," Land, MDPI, vol. 11(11), pages 1-19, November.
    9. Liwei Xing & Liang Chi & Shuqing Han & Jianzhai Wu & Jing Zhang & Cuicui Jiao & Xiangyang Zhou, 2022. "Spatiotemporal Dynamics of Wetland in Dongting Lake Based on Multi-Source Satellite Observation Data during Last Two Decades," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    10. Qing Wang & Yuhang Xiao, 2022. "Has Urban Construction Land Achieved Low-Carbon Sustainable Development? A Case Study of North China Plain, China," Sustainability, MDPI, vol. 14(15), pages 1-29, August.
    11. Berman, Nicolas & Couttenier, Mathieu & Leblois, Antoine & Soubeyran, Raphael, 2023. "Crop prices and deforestation in the tropics," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    12. Yiming Wang & Yunfeng Hu & Xiaoyu Niu & Huimin Yan & Lin Zhen, 2022. "Land Use/Cover Change and Its Driving Mechanism in Thailand from 2000 to 2020," Land, MDPI, vol. 11(12), pages 1-22, December.
    13. Kong, Xuesong & Fu, Mengxue & Zhao, Xiang & Wang, Jing & Jiang, Ping, 2022. "Ecological effects of land-use change on two sides of the Hu Huanyong Line in China," Land Use Policy, Elsevier, vol. 113(C).
    14. Yuan Gong & Xin Geng & Ping Wang & Shi Hu & Xunming Wang, 2024. "Impact of Urbanization-Driven Land Use Changes on Runoff in the Upstream Mountainous Basin of Baiyangdian, China: A Multi-Scenario Simulation Study," Land, MDPI, vol. 13(9), pages 1-22, August.
    15. Yanyan Li & Jinbing Zhang & Hui Zhu & Zhimin Zhou & Shan Jiang & Shuangyan He & Ying Zhang & Yicheng Huang & Mengfan Li & Guangrui Xing & Guanghui Li, 2023. "Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    16. Mohsen Khezri, 2025. "Impact of Various Land Cover Transformations on Climate Change: Insights from a Spatial Panel Analysis," Data, MDPI, vol. 10(2), pages 1-21, January.
    17. Wenfei Luan & Ge Li & Bo Zhong & Jianwei Geng & Xin Li & Hui Li & Shi He, 2023. "Improving Dryland Urban Land Cover Classification Accuracy Using a Classical Convolution Neural Network," Land, MDPI, vol. 12(8), pages 1-20, August.
    18. Tianyi Cai & Xueyuan Luo & Liyao Fan & Jing Han & Xinhuan Zhang, 2022. "The Impact of Cropland Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cropland Hotspots in China during 2000–2020," Land, MDPI, vol. 11(12), pages 1-21, December.
    19. Shilei Wang & Yanbo Qu & Weiying Zhao & Mei Guan & Zongli Ping, 2022. "Evolution and Optimization of Territorial-Space Structure Based on Regional Function Orientation," Land, MDPI, vol. 11(4), pages 1-26, March.
    20. Gui Chen & Qingxia Peng & Qiaohong Fan & Wenxiong Lin & Kai Su, 2024. "Spatial-Temporal Variation and Driving Forces of Carbon Storage at the County Scale in China Based on a Gray Multi-Objective Optimization-Patch-Level Land Use Simulation-Integrated Valuation of Ecosys," Land, MDPI, vol. 14(1), pages 1-32, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:4820-:d:1091996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.