IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i11p1948-d236342.html
   My bibliography  Save this article

Emergency Evacuation Plan for Hazardous Chemicals Leakage Accidents Using GIS-based Risk Analysis Techniques in South Korea

Author

Listed:
  • Byungtae Yoo

    (Accident Prevention and Assessment Division, National Institute of Chemical Safety, 90 Gajeongbuk-ro, Yuseong-gu, Daejeon 305-343, Korea)

  • Sang D. Choi

    (Department of Occupational & Environmental Safety & Health, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA)

Abstract

Despite improvements in chemical safety management systems, incidents involving the release of hazardous chemicals continue to happen. In some cases, they result in the evacuation of residents. For hazardous chemical release accidents, an evacuation plan needs to be selective enough to consider both the indoor and outdoor concentrations of nearby buildings and the time in which the maximum allowable concentration may occur. In this study, a real-time risk analysis tool was developed based on the geographic information system (GIS) in order to establish the emergency response and risk communication plan for effectively assisting decision-making personnel. A selective evacuation plan was also established by a proposed assessment module considering the indoor/outdoor pollution concentration of buildings and the release duration time of chlorine gas leakage. The GIS-based simulated modules were performed based on eleven buildings of Ulsan city, located near an industrial cluster and home to a high population density. As a result of the simulated real-time risk assessment, only four buildings were affected by chlorine gas concentration according to wind direction and diffusion time. In addition, it was considered effective to establish an indoor/outdoor evacuation plan as opposed to an outdoor evacuation plan which is outside the range of the damage. Subsequently, an emergency evacuation plan was established with the concentration of a hazardous chemical according to the decision-making matrix. This study can enlighten the real-time emergency risk assessment based on GIS while effectively supporting the emergency action plans in response to the release of hazardous chemicals in clustered plants and the community.

Suggested Citation

  • Byungtae Yoo & Sang D. Choi, 2019. "Emergency Evacuation Plan for Hazardous Chemicals Leakage Accidents Using GIS-based Risk Analysis Techniques in South Korea," IJERPH, MDPI, vol. 16(11), pages 1-14, June.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:11:p:1948-:d:236342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/11/1948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/11/1948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myung, Young-Soo & Kim, Hyun-joon, 2004. "A cutting plane algorithm for computing k-edge survivability of a network," European Journal of Operational Research, Elsevier, vol. 156(3), pages 579-589, August.
    2. Stepanov, Alexander & Smith, James MacGregor, 2009. "Multi-objective evacuation routing in transportation networks," European Journal of Operational Research, Elsevier, vol. 198(2), pages 435-446, October.
    3. Hyo Eun Lee & Jong-Ryeul Sohn & Sang-Hoon Byeon & Seok J. Yoon & Kyong Whan Moon, 2018. "Alternative Risk Assessment for Dangerous Chemicals in South Korea Regulation: Comparing Three Modeling Programs," IJERPH, MDPI, vol. 15(8), pages 1-12, July.
    4. Reniers, Genserik & Soudan, Karel, 2010. "A game-theoretical approach for reciprocal security-related prevention investment decisions," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhichao & Shen, Kaixin & Lan, Meng & Weng, Wenguo, 2024. "An evacuation path planning method for multi-hazard accidents in chemical industries based on risk perception," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Jieyin Lyu & Shouqin Zhou & Jingang Liu & Bingchun Jiang, 2023. "Intelligent-Technology-Empowered Active Emergency Command Strategy for Urban Hazardous Chemical Disaster Management," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
    4. Li, Jian & Yang, Zhao & He, Hongxia & Guo, Changzhen & Chen, Yubo & Zhang, Yong, 2024. "Risk causation analysis and prevention strategy of working fluid systems based on accident data and complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Zhen-Song Chen & Min Li & Wen-Tao Kong & Kwai-Sang Chin, 2019. "Evaluation and Selection of HazMat Transportation Alternatives: A PHFLTS- and TOPSIS-Integrated Multi-Perspective Approach," IJERPH, MDPI, vol. 16(21), pages 1-33, October.
    6. He, Zhichao & Shen, Kaixin & Lan, Meng & Weng, Wenguo, 2024. "The effects of dynamic multi-hazard risk assessment on evacuation strategies in chemical accidents," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuiyun Cheng & Xin Qian & Yuchao Zhang & Qingeng Wang & Jinbao Sheng, 2011. "Estimation of the evacuation clearance time based on dam-break simulation of the Huaxi dam in Southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 227-243, May.
    2. Karakose, Gokhan & McGarvey, Ronald G., 2018. "Capacitated path-aggregation constraint model for arc disruption in networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 225-238.
    3. Qian Ye & Hyun Kim, 2019. "Assessing network vulnerability of heavy rail systems with the impact of partial node failures," Transportation, Springer, vol. 46(5), pages 1591-1614, October.
    4. Alexander Veremyev & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2014. "An integer programming framework for critical elements detection in graphs," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 233-273, July.
    5. César Yajure & Darihelen Montilla & Jose Emmanuel Ramirez-Marquez & Claudio M Rocco S, 2013. "Network vulnerability assessment via bi-objective optimization with a fragmentation approach as proxy," Journal of Risk and Reliability, , vol. 227(6), pages 576-585, December.
    6. Mun Seob Ahn & Hyo Eun Lee & Kwang Soo Cheon & Huoung Gi Joo & Ochang Chemical Safety Community & Bu-Soon Son, 2020. "Feasibility Evaluation of Designated Quantities for Chemicals Requiring Preparation for Accidents in the Korean Chemical Accident Prevention System," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    7. Morabito, Reinaldo & de Souza, Mauricio C. & Vazquez, Mariana, 2014. "Approximate decomposition methods for the analysis of multicommodity flow routing in generalized queuing networks," European Journal of Operational Research, Elsevier, vol. 232(3), pages 618-629.
    8. Zhang, Laobing & Reniers, Genserik & Qiu, Xiaogang, 2019. "Playing chemical plant protection game with distribution-free uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    10. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    11. Alfonso J. Pedraza-Martinez & Sameer Hasija & Luk N. Van Wassenhove, 2020. "Fleet Coordination in Decentralized Humanitarian Operations Funded by Earmarked Donations," Operations Research, INFORMS, vol. 68(4), pages 984-999, July.
    12. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    13. Gai, Wen-mei & Deng, Yun-feng & Jiang, Zhong-an & Li, Jing & Du, Yan, 2017. "Multi-objective evacuation routing optimization for toxic cloud releases," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 58-68.
    14. Knut Haase & Mathias Kasper & Matthes Koch & Sven Müller, 2019. "A Pilgrim Scheduling Approach to Increase Safety During the Hajj," Operations Research, INFORMS, vol. 67(2), pages 376-406, March.
    15. Yates, Justin & Sanjeevi, Sujeevraja, 2013. "A length-based, multiple-resource formulation for shortest path network interdiction problems in the transportation sector," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(2), pages 107-119.
    16. Rex Aurelius C. Robielos & Chiuhsiang Joe Lin & Delia B. Senoro & Froilan P. Ney, 2020. "Development of Vulnerability Assessment Framework for Disaster Risk Reduction at Three Levels of Geopolitical Units in the Philippines," Sustainability, MDPI, vol. 12(21), pages 1-27, October.
    17. Wang, Guangchao & Jia, Ning & Ma, Shoufeng & Qi, Hang, 2014. "A rank-dependent bi-criterion equilibrium model for stochastic transportation environment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 511-529.
    18. Moshtagh, Mehrdad & Fathali, Jafar & Smith, J. MacGregor, 2018. "The Stochastic Queue Core problem, evacuation networks, and state-dependent queues," European Journal of Operational Research, Elsevier, vol. 269(2), pages 730-748.
    19. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    20. Inmaculada Flores & M. Teresa Ortuño & Gregorio Tirado & Begoña Vitoriano, 2020. "Supported Evacuation for Disaster Relief through Lexicographic Goal Programming," Mathematics, MDPI, vol. 8(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:11:p:1948-:d:236342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.