IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14226-d1248061.html
   My bibliography  Save this article

Enhancing Thermal Performance of Autoclaved Aerated Concrete (AAC) Incorporating Sugar Sediment Waste and Recycled AAC with Phase Change Material-Coated Applications for Sustainable Energy Conservation in Building

Author

Listed:
  • Atthakorn Thongtha

    (Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand)

  • Somchai Maneewan

    (Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand)

  • Ahmad Fazlizan

    (Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

Abstract

This research focuses on the integration of waste materials derived from sugar sediment and recycled AAC into the manufacturing process of autoclaved aerated concrete (AAC) to enhance its physical, mechanical, and thermal characteristics. Furthermore, the investigation explores the prospect of augmenting the thermal efficiency of the AAC composite by applying different quantities of paraffin phase change material (PCM) coatings to its external surface. Throughout the thermal testing phase, temperature control was consistently maintained at three distinct levels: 40 °C, 50 °C, and 60 °C, facilitated by a heater serving as the thermal source. The investigation unveiled that the optimal composition encompassed a 10% by weight replacement of sand with recycled AAC content. This formulation resulted in a peak compressive strength of around 5.85 N/mm 2 , along with a maximum tobermorite phase ratio of 25.5%. The elevated strength is directly associated with the heightened crystalline nature of the tobermorite phase. The most favorable configuration incorporated a 20 g PCM-coated material, demonstrating remarkable outcomes, including an extension of the time lag by about 55%, a reduction in the decrement factor by around 56.4%, as well as a substantial reduction in room temperature of roughly 15.8% compared to standard AAC without PCM coating, all at a stable temperature of 60 °C. The integration of sustainable waste materials and PCM technology, as illustrated in this study, notably contributes to resource conservation and the advancement of energy-efficient architectural practices.

Suggested Citation

  • Atthakorn Thongtha & Somchai Maneewan & Ahmad Fazlizan, 2023. "Enhancing Thermal Performance of Autoclaved Aerated Concrete (AAC) Incorporating Sugar Sediment Waste and Recycled AAC with Phase Change Material-Coated Applications for Sustainable Energy Conservatio," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14226-:d:1248061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adilkhanova, Indira & Memon, Shazim Ali & Kim, Jong & Sheriyev, Almas, 2021. "A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime," Energy, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Pengcheng & Liu, Zhongbing & Zhang, Ling & Wang, Zhe & Fan, Jianhua, 2023. "Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions," Applied Energy, Elsevier, vol. 341(C).
    2. Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2024. "Combination optimization, importance order of parameters and aging consequence prediction for thermal insulation coating with radiation characteristics," Energy, Elsevier, vol. 290(C).
    3. Ahmad, Abrar & Memon, Shazim Ali, 2024. "A novel method to evaluate phase change materials' impact on buildings' energy, economic, and environmental performance via controlled natural ventilation," Applied Energy, Elsevier, vol. 353(PB).
    4. Arıcı, Müslüm & Bilgin, Feyza & Krajčík, Michal & Nižetić, Sandro & Karabay, Hasan, 2022. "Energy saving and CO2 reduction potential of external building walls containing two layers of phase change material," Energy, Elsevier, vol. 252(C).
    5. Rongda Ye & Xiaoming Fang & Zhengguo Zhang, 2021. "Numerical Study on Energy-Saving Performance of a New Type of Phase Change Material Room," Energies, MDPI, vol. 14(13), pages 1-18, June.
    6. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    7. Kabdrakhmanova, Marzhan & Memon, Shazim Ali & Saurbayeva, Assemgul, 2021. "Implementation of the panel data regression analysis in PCM integrated buildings located in a humid subtropical climate," Energy, Elsevier, vol. 237(C).
    8. Safari, Vahid & Kamkari, Babak & Hooman, Kamel & Khodadadi, J.M., 2022. "Sensitivity analysis of design parameters for melting process of lauric acid in the vertically and horizontally oriented rectangular thermal storage units," Energy, Elsevier, vol. 255(C).
    9. Liu, Zu-An & Hou, Jiawen & Chen, Yu & Liu, Zaiqiang & Zhang, Tao & Zeng, Qian & Dewancker, Bart Julien & Meng, Xi & Jiang, Guanzhao, 2023. "Effectiveness assessment of different kinds/configurations of phase-change materials (PCM) for improving the thermal performance of lightweight building walls in summer and winter," Renewable Energy, Elsevier, vol. 202(C), pages 721-735.
    10. Chen, Xing-ni & Xu, Bin & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Parameter optimization of phase change material and the combination of phase change material and cool paint according to corresponding energy consumption characteristics under various climates," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14226-:d:1248061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.