IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124019657.html
   My bibliography  Save this article

Investigating the thermal performance of a pipe-encapsulated movable PCM wall and its impact on reducing indoor heat gain during summer

Author

Listed:
  • Su, Huan
  • Zhang, Zhe
  • Dai, Guoqiang
  • Guo, Haoyu
  • Li, Xiaohua
  • Xu, Chunwen

Abstract

The utilization of phase change materials (PCM) in building envelopes is considered to be an effective technology for reducing energy consumption during building operations. In this study, a novel approach is presented for integrating PCM into walls by encapsulating it using pipes, allowing for its mobility through the use of compressed air. Four experimentally validated thermal models, pipe-encapsulated movable PCM (PEM-PCM) wall (Model 1), wall with PCM fixed to the exterior (Model 2), wall with PCM fixed to the interior (Model 3), and wall without PCM (Model 4), were proposed to compare their energy efficiency in summer. Different upper threshold limits (Ttr,up) and lower threshold limits (Ttr,low) were employed to explore the impact of various threshold combinations control strategies on the thermal performance of the wall. The results show that the most effective operating scheme is Ttr,up of 27 °C and Ttr,low of 25 °C. In terms of long-term operation, cumulative summer indoor heat gain of Model 1 is 10.65 %, 10.85 % and 11.4 % lower than that of Model 2,3 and 4. Notably, September demonstrates the greatest potential for energy savings, with Model 1 reducing the monthly cumulative indoor heat gain by 54.12 % compared to Model 4.

Suggested Citation

  • Su, Huan & Zhang, Zhe & Dai, Guoqiang & Guo, Haoyu & Li, Xiaohua & Xu, Chunwen, 2024. "Investigating the thermal performance of a pipe-encapsulated movable PCM wall and its impact on reducing indoor heat gain during summer," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019657
    DOI: 10.1016/j.renene.2024.121897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.