IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0119175.html
   My bibliography  Save this article

Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties

Author

Listed:
  • Houxi Zhang
  • Shunyao Zhuang
  • Haiyan Qian
  • Feng Wang
  • Haibao Ji

Abstract

Understanding the spatial variability of soil organic carbon (SOC) must be enhanced to improve sampling design and to develop soil management strategies in terrestrial ecosystems. Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) forests have a high SOC storage potential; however, they also vary significantly spatially. This study investigated the spatial variability of SOC (0-20 cm) in association with other soil properties and with spatial variables in the Moso bamboo forests of Jian’ou City, which is a typical bamboo hometown in China. 209 soil samples were collected from Moso bamboo stands and then analyzed for SOC, bulk density (BD), pH, cation exchange capacity (CEC), and gravel content (GC) based on spatial distribution. The spatial variability of SOC was then examined using geostatistics. A Kriging map was produced through ordinary interpolation and required sample numbers were calculated by classical and Kriging methods. An aggregated boosted tree (ABT) analysis was also conducted. A semivariogram analysis indicated that ln(SOC) was best fitted with an exponential model and that it exhibited moderate spatial dependence, with a nugget/sill ratio of 0.462. SOC was significantly and linearly correlated with BD (r = −0.373**), pH (r = −0.429**), GC (r = −0.163*), CEC (r = 0.263**), and elevation (r = 0.192**). Moreover, the Kriging method requires fewer samples than the classical method given an expected standard error level as per a variance analysis. ABT analysis indicated that the physicochemical variables of soil affected SOC variation more significantly than spatial variables did, thus suggesting that the SOC in Moso bamboo forests can be strongly influenced by management practices. Thus, this study provides valuable information in relation to sampling strategy and insight into the potential of adjustments in agronomic measure, such as in fertilization for Moso bamboo production.

Suggested Citation

  • Houxi Zhang & Shunyao Zhuang & Haiyan Qian & Feng Wang & Haibao Ji, 2015. "Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
  • Handle: RePEc:plo:pone00:0119175
    DOI: 10.1371/journal.pone.0119175
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119175
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0119175&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0119175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gao Peng & Wang Bing & Geng Guangpo & Zhang Guangcan, 2013. "Spatial Distribution of Soil Organic Carbon and Total Nitrogen Based on GIS and Geostatistics in a Small Watershed in a Hilly Area of Northern China," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelica Melone & Leah L. Bremer & Susan E. Crow & Zoe Hastings & Kawika B. Winter & Tamara Ticktin & Yoshimi M. Rii & Maile Wong & Kānekoa Kukea-Shultz & Sheree J. Watson & Clay Trauernicht, 2021. "Assessing Baseline Carbon Stocks for Forest Transitions: A Case Study of Agroforestry Restoration from Hawaiʻi," Agriculture, MDPI, vol. 11(3), pages 1-17, February.
    2. Agathos Filintas & Nikolaos Gougoulias & Nektarios Kourgialas & Eleni Hatzichristou, 2023. "Management Soil Zones, Irrigation, and Fertigation Effects on Yield and Oil Content of Coriandrum sativum L. Using Precision Agriculture with Fuzzy k-Means Clustering," Sustainability, MDPI, vol. 15(18), pages 1-33, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiayu Tian & Yaru Yuan & Pengchong Zhou & Lixin Wang & Zhuoxin Chen & Qiang Chen, 2023. "Spatial Distribution of Soil Organic Carbon and Total Nitrogen in a Micro-Catchment of Northeast China and Their Influencing Factors," Sustainability, MDPI, vol. 15(8), pages 1-12, April.
    2. Gwanyong Jeong & Kwanghun Choi & Marie Spohn & Soo Jin Park & Bernd Huwe & Mareike Ließ, 2017. "Environmental drivers of spatial patterns of topsoil nitrogen and phosphorus under monsoon conditions in a complex terrain of South Korea," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-19, August.
    3. Gerson Meza Mori & Cristóbal Torres Guzmán & Manuel Oliva-Cruz & Rolando Salas López & Gladys Marlo & Elgar Barboza, 2022. "Spatial Analysis of Environmentally Sensitive Areas to Soil Degradation Using MEDALUS Model and GIS in Amazonas (Peru): An Alternative for Ecological Restoration," Sustainability, MDPI, vol. 14(22), pages 1-20, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0119175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.