IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7256-d1462581.html
   My bibliography  Save this article

Spatial-Temporal Evolution and Environmental Regulation Effects of Carbon Emissions in Shrinking and Growing Cities: Empirical Evidence from 272 Cities in China

Author

Listed:
  • Xinhang Tang

    (School of Economics and Management, Harbin Normal University, Harbin 150025, China)

  • Shuai Shao

    (School of Economics and Management, Harbin Normal University, Harbin 150025, China)

  • Jia Cui

    (School of Economics and Management, Harbin Normal University, Harbin 150025, China
    Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China)

Abstract

Shrinking and growing cities are categories of cities characterized by population loss or add, and the issue of carbon emissions in these cities is often neglected. Environmental regulation, as an important influence on carbon emissions, plays an important role in promoting the low-carbon transition in Chinese cities. This study focused on the carbon emissions of 272 cities in China from 2012–2021, constructed a comprehensive indicator to classify four city types, and calculated carbon emissions. Spatial-temporal characteristics and evolution of carbon emissions and impacts of environmental regulation were investigated. Carbon emissions of rapidly growing cities showed a downward trend, whereas those of slightly growing, rapidly shrinking, and slightly shrinking cities showed upward trends. The more rapidly a city grew or shrunk, the higher its average carbon emissions. Growing cities’ center of gravity of their carbon emissions migrated northwest. Carbon emissions of rapidly and slightly shrinking cities were high in the northeast, and their carbon emission centers migrated northeast and southwest, respectively, with obvious spatial autocorrelation of city types. Strengthening environmental regulations significantly positively affected carbon emission reduction. The impact of environmental regulation on carbon emissions reduction was temporally and spatially heterogeneous and more significant in non-resource cities.

Suggested Citation

  • Xinhang Tang & Shuai Shao & Jia Cui, 2024. "Spatial-Temporal Evolution and Environmental Regulation Effects of Carbon Emissions in Shrinking and Growing Cities: Empirical Evidence from 272 Cities in China," Sustainability, MDPI, vol. 16(17), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7256-:d:1462581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    2. Wenmei KANG & Benfan LIANG & Keyu XIA & Fei XUE & Yu LI, 2021. "Decoupling of Carbon Emissions from Economic Growth: An Empirical Analysis Based on 264 Prefecture-Level Cities in China," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-14, September.
    3. Yanyi Zhu & Youpei Hu, 2023. "The Correlation between Urban Form and Carbon Emissions: A Bibliometric and Literature Review," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    4. Lei Wu & Chengao Zhu & Xinhao Song & Junge He, 2023. "Impact of Environmental Regulation on Carbon Emissions in Countries along the Belt and Road—An Empirical Study Based on PSTR Model," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    5. Liyuan Fu & Qing Wang, 2022. "Spatial and Temporal Distribution and the Driving Factors of Carbon Emissions from Urban Production Energy Consumption," IJERPH, MDPI, vol. 19(19), pages 1-29, September.
    6. Xiao, Huijuan & Duan, Zhiyuan & Zhou, Ya & Zhang, Ning & Shan, Yuli & Lin, Xiyan & Liu, Guosheng, 2019. "CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Xinhua Tong & Shurui Guo & Haiyan Duan & Zhiyuan Duan & Chang Gao & Wu Chen, 2022. "Carbon-Emission Characteristics and Influencing Factors in Growing and Shrinking Cities: Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    8. Li, Yan & Chen, Zhenhua, 2023. "Does transportation infrastructure accelerate factor outflow from shrinking cities? An evidence from China," Transport Policy, Elsevier, vol. 134(C), pages 180-190.
    9. Hua Xiang & Xueting Zeng & Hongfang Han & Xianjuan An, 2023. "Impact of Population Aging on Carbon Emissions in China: An Empirical Study Based on a Kaya Model," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    10. Amir Reza Khavarian-Garmsir, 2023. "A systematic review of shrinking cities literature: lessons from the past and directions for the future," International Planning Studies, Taylor & Francis Journals, vol. 28(3-4), pages 219-238, October.
    11. Ming Li & Guojun Zhang & Ying Liu & Yongwang Cao & Chunshan Zhou, 2019. "Determinants of Urban Expansion and Spatial Heterogeneity in China," IJERPH, MDPI, vol. 16(19), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolei Huang & Jinpei Ou & Yingjian Huang & Shun Gao, 2023. "Exploring the Effects of Socioeconomic Factors and Urban Forms on CO 2 Emissions in Shrinking and Growing Cities," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    2. Yuanzhen Song & Jian Tian & Weijie He & Aihemaiti Namaiti & Jian Zeng, 2024. "Differential Analysis of Carbon Emissions between Growing and Shrinking Cities: A Case of Three Northeastern Provinces in China," Land, MDPI, vol. 13(5), pages 1-23, May.
    3. Shouzhong Zhang & Limin Wang & Xiangli Wu, 2022. "Population Shrinkage, Public Service Levels, and Heterogeneity in Resource-Based Cities: Case Study of 112 Cities in China," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    4. Alexis Poulhès & Angèle Brachet, 2021. "Does Revitalizing the Center of Mid-Sized French Cities Reduce GHG Emissions from Commuting?," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    5. Tianyi Zeng & Hong Jin & Zhifei Geng & Zihang Kang & Zichen Zhang, 2022. "The Effect of Urban Shrinkage on Carbon Dioxide Emissions Efficiency in Northeast China," IJERPH, MDPI, vol. 19(9), pages 1-18, May.
    6. Tianyi Zeng & Hong Jin & Xu Gang & Zihang Kang & Jiayi Luan, 2022. "County Economy, Population, Construction Land, and Carbon Intensity in a Shrinkage Scenario," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    7. Xinhua Tong & Shurui Guo & Haiyan Duan & Zhiyuan Duan & Chang Gao & Wu Chen, 2022. "Carbon-Emission Characteristics and Influencing Factors in Growing and Shrinking Cities: Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    8. Qingsong He & Miao Yan & Linzi Zheng & Bo Wang & Jiang Zhou, 2023. "The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector," Land, MDPI, vol. 12(4), pages 1-17, March.
    9. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    10. Mingshu Wang, 2021. "Polycentric urban development and urban amenities: Evidence from Chinese cities," Environment and Planning B, , vol. 48(3), pages 400-416, March.
    11. Xiaoxu, Xing & Qiangmin, Xi & Weihao, Shi, 2024. "Impact of urban compactness on carbon emission in Chinese cities: From moderating effects of industrial diversity and job-housing imbalances," Land Use Policy, Elsevier, vol. 143(C).
    12. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    13. Jing Tao & Ying Wang & Rong Wang & Chuanmin Mi, 2019. "Do Compactness and Poly-Centricity Mitigate PM 10 Emissions? Evidence from Yangtze River Delta Area," IJERPH, MDPI, vol. 16(21), pages 1-18, October.
    14. Xu Yang & Xuan Zou & Ming Li & Zeyu Wang, 2024. "The Decarbonization Effect of the Urban Polycentric Structure: Empirical Evidence from China," Land, MDPI, vol. 13(2), pages 1-17, February.
    15. Zhong, Jiehua & Kan, Ho Yin, 2024. "The impact of government policy, natural resources and ecological innovations on energy transition and environmental sustainability: Insights from China," Resources Policy, Elsevier, vol. 89(C).
    16. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    17. Jiang Zhu & Xiang Li & Huiming Huang & Xiangdong Yin & Jiangchun Yao & Tao Liu & Jiexuan Wu & Zhangcheng Chen, 2023. "Spatiotemporal Evolution of Carbon Emissions According to Major Function-Oriented Zones: A Case Study of Guangdong Province, China," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    18. Yangyang Wang & Yanjun Liu & Guolei Zhou & Zuopeng Ma & Hongri Sun & Hui Fu, 2022. "Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China," Land, MDPI, vol. 11(3), pages 1-19, March.
    19. Wang, Hanjie & Yu, Xiaohua, 2023. "Carbon dioxide emission typology and policy implications: Evidence from machine learning," China Economic Review, Elsevier, vol. 78(C).
    20. Siyu Zhu & Ying Ding & Run Pan & Aifang Ding, 2023. "Analysis of Interprovincial Differences in CO 2 Emissions and Peak Prediction in the Yangtze River Delta," Sustainability, MDPI, vol. 15(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7256-:d:1462581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.