IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p13050-d1228573.html
   My bibliography  Save this article

Reducing CO 2 Emissions and Improving Water Resource Circularity by Optimizing Energy Efficiency in Buildings

Author

Listed:
  • Giada Romano

    (Planning Design Technology of Architecture Department, ‘‘Sapienza” University of Rome, 00196 Rome, Italy)

  • Serena Baiani

    (Planning Design Technology of Architecture Department, ‘‘Sapienza” University of Rome, 00196 Rome, Italy)

  • Francesco Mancini

    (Planning Design Technology of Architecture Department, ‘‘Sapienza” University of Rome, 00196 Rome, Italy)

  • Fabrizio Tucci

    (Planning Design Technology of Architecture Department, ‘‘Sapienza” University of Rome, 00196 Rome, Italy)

Abstract

Climate neutrality by 2050 is a priority objective and reducing greenhouse gas (GHG) emissions, increasing energy efficiency, and improving the circularity processes of resources are the imperatives of regulatory and economic instruments. Starting from the central themes of the mitigation of the causes of climate change and the interdependence represented by the water–energy nexus, this research focuses, through the application of the principles of the circular and green economy, on deep energy zero-emission renovation through the improvement of circularity processes of water resources in their integration with energetic ones on the optimization of their management within urban districts, to measure their capacity to contribute towards reducing energy consumption and CO 2 emissions during water use and distribution in buildings. After defining the key strategies and the replicable intervention solutions for the circularity of water resources, the investigation focuses on the definition of the research and calculation method set up to define, in parallel, the water consumption of an urban district and the energy consumption necessary to satisfy water requirements and CO 2 emissions. Starting from the application of the calculation method in an existing urban district in Rome, 10 indicators of quantities have been developed to define water and energy consumption and their related CO 2 emissions, focusing on the obtained results to also define some interventions to reduce water and energy consumption and CO 2 emissions in territories that suffer a medium-risk impact from contemporary climatic conditions.

Suggested Citation

  • Giada Romano & Serena Baiani & Francesco Mancini & Fabrizio Tucci, 2023. "Reducing CO 2 Emissions and Improving Water Resource Circularity by Optimizing Energy Efficiency in Buildings," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13050-:d:1228573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/13050/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/13050/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ewelina Płuciennik-Koropczuk & Sylwia Myszograj & Mirosław Mąkowski, 2022. "Reducing CO 2 Emissions from Wastewater Treatment Plants by Utilising Renewable Energy Sources—Case Study," Energies, MDPI, vol. 15(22), pages 1-14, November.
    2. Margaret O. Wilder & Ismael Aguilar-Barajas & Nicolás Pineda-Pablos & Robert G. Varady & Sharon B. Megdal & Jamie McEvoy & Robert Merideth & Adriana A. Zúñiga-Terán & Christopher A. Scott, 2016. "Desalination and water security in the US–Mexico border region: assessing the social, environmental and political impacts," Water International, Taylor & Francis Journals, vol. 41(5), pages 756-775, July.
    3. Liu, F. & Tait, S. & Schellart, A. & Mayfield, M. & Boxall, J., 2020. "Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Węgiel & Dariusz Borkowski & Rafał Blazy & Agnieszka Ciepiela & Mariusz Łysień & Jakub Dudek & Jakub Błachut & Hanna Hrehorowicz-Gaber & Alicja Hrehorowicz-Nowak, 2024. "Selection of Renewable Energy Sources for Modular and Mobile “Green Classroom” Facilities," Energies, MDPI, vol. 17(9), pages 1-21, April.
    2. Enrique Bonet & María Teresa Yubero, 2024. "Optimal Pumping Flow Algorithm to Improve Pumping Station Operations in Irrigation Systems," Agriculture, MDPI, vol. 14(3), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    2. Zekri, S., 2018. "Optimizing aquifer recharge and recovery using seasonal surplus desalinated water," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276946, International Association of Agricultural Economists.
    3. Saleh, Layla & Mezher, Toufic, 2021. "Techno-economic analysis of sustainability and externality costs of water desalination production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Teresa Blázquez & Tiziano Dalla Mora & Simone Ferrari & Piercarlo Romagnoni & Lorenzo Teso & Federica Zagarella, 2022. "Renovating Building Groups in the Mediterranean Climate: Cost-Effectiveness of Renewable-Based Heating Alternatives in the Italian Context," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    5. Zhang, Jiaan & Liu, Dong & Li, Zhijun & Han, Xu & Liu, Hui & Dong, Cun & Wang, Junyan & Liu, Chenyu & Xia, Yunpeng, 2021. "Power prediction of a wind farm cluster based on spatiotemporal correlations," Applied Energy, Elsevier, vol. 302(C).
    6. Juan Ríos-Arriola & Nicolás Velázquez & Jesús Armando Aguilar-Jiménez & Germán Eduardo Dévora-Isiordia & Cristian Ascención Cásares-de la Torre & José Armando Corona-Sánchez & Saúl Islas, 2022. "State of the Art of Desalination in Mexico," Energies, MDPI, vol. 15(22), pages 1-23, November.
    7. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Ouyang, Xiao & Xu, Zihan & Fan, Weiguo & Wei, Hejie & Song, Weize, 2021. "Regional embodied Water-Energy-Carbon efficiency of China," Energy, Elsevier, vol. 224(C).
    8. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Jawairia Imtiaz Ahmad & Sara Giorgi & Ljiljana Zlatanovic & Gang Liu & Jan Peter van der Hoek, 2021. "Maximizing Thermal Energy Recovery from Drinking Water for Cooling Purpose," Energies, MDPI, vol. 14(9), pages 1-14, April.
    10. Ye, Lin & Dai, Binhua & Li, Zhuo & Pei, Ming & Zhao, Yongning & Lu, Peng, 2022. "An ensemble method for short-term wind power prediction considering error correction strategy," Applied Energy, Elsevier, vol. 322(C).
    11. Zheng, Shunlin & Sun, Yi & Li, Bin & Qi, Bing & Zhang, Xudong & Li, Fei, 2021. "Incentive-based integrated demand response for multiple energy carriers under complex uncertainties and double coupling effects," Applied Energy, Elsevier, vol. 283(C).
    12. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13050-:d:1228573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.