IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12833-d1224477.html
   My bibliography  Save this article

Hierarchical Model-Predictive-Control-Based Energy Management Strategy for Fuel Cell Hybrid Commercial Vehicles Incorporating Traffic Information

Author

Listed:
  • Yuguo Xu

    (School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China)

  • Enyong Xu

    (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Commercial Vehicle Technology Center, Dong Feng Liuzhou Automobile Co., Ltd., Liuzhou 545005, China)

  • Weiguang Zheng

    (School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
    State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545616, China)

  • Qibai Huang

    (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

With the development of intelligent transportation systems, access to diverse transportation information has become possible. Integrating this information into an energy management strategy will make the energy allocation prospective and thus improve the overall performance of the energy management program. For this reason, this paper proposes a hierarchical model predictive control (MPC) energy management strategy that incorporates traffic information, where the upper layer plans the vehicle’s velocity based on the traffic information and the lower layer optimizes the energy distribution of the vehicle based on the planned velocity. In order to improve the accuracy of the planning speed of the upper strategy, a dung beetle optimization-radial basis function (DBO-RBF) prediction model is constructed, artfully optimizing the RBF neural network using the dung beetle optimization algorithm. The results show that the prediction accuracy is improved by 13.96% at a prediction length of 5 s. Further, when the vehicle passes through a traffic light intersection, the traffic light information is also considered in the upper strategy to plan a more economical speed and improve the traffic efficiency of the vehicle and traffic utilization. Finally, a dynamic programming (DP)-based solver is designed in the lower layer of the strategy, which optimizes the energy distribution of the vehicle according to the velocity planned by the upper layer to improve the economy of the vehicle. The results demonstrate achieving a noteworthy 3.97% improvement in fuel economy compared to the conventional rule-based energy management strategy and allowing drivers to proceed through red light intersections without stopping. This proves a substantial performance enhancement in energy management strategies resulting from the integration of transportation information.

Suggested Citation

  • Yuguo Xu & Enyong Xu & Weiguang Zheng & Qibai Huang, 2023. "Hierarchical Model-Predictive-Control-Based Energy Management Strategy for Fuel Cell Hybrid Commercial Vehicles Incorporating Traffic Information," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12833-:d:1224477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Krishna Veer & Bansal, Hari Om & Singh, Dheerendra, 2021. "Fuzzy logic and Elman neural network tuned energy management strategies for a power-split HEVs," Energy, Elsevier, vol. 225(C).
    2. Wang, Xuechao & Chen, Jinzhou & Quan, Shengwei & Wang, Ya-Xiong & He, Hongwen, 2020. "Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells," Applied Energy, Elsevier, vol. 276(C).
    3. Yanwei Liu & Jiansheng Liang & Jiaqing Song & Jie Ye, 2022. "Research on Energy Management Strategy of Fuel Cell Vehicle Based on Multi-Dimensional Dynamic Programming," Energies, MDPI, vol. 15(14), pages 1-20, July.
    4. Hu, Jiayi & Li, Jianqiu & Hu, Zunyan & Xu, Liangfei & Ouyang, Minggao, 2021. "Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming," Energy, Elsevier, vol. 215(PA).
    5. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enyong Xu & Mengcheng Ma & Weiguang Zheng & Qibai Huang, 2023. "An Energy Management Strategy for Fuel-Cell Hybrid Commercial Vehicles Based on Adaptive Model Prediction," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    2. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    3. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    4. Yongbing Xiang & Xiaomin Yang, 2021. "An ECMS for Multi-Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-21, February.
    5. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    6. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    7. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Jun-bin Wang & Lufei Huang, 2021. "A Game-Theoretic Analytical Approach for Fostering Energy-Saving Innovation in the Electric Vehicle Supply Chain," SAGE Open, , vol. 11(2), pages 21582440211, June.
    9. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    10. Taghavifar, Hadi, 2021. "Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization," Energy, Elsevier, vol. 229(C).
    11. Zhou, Jianhao & Liu, Jun & Xue, Yuan & Liao, Yuhui, 2022. "Total travel costs minimization strategy of a dual-stack fuel cell logistics truck enhanced with artificial potential field and deep reinforcement learning," Energy, Elsevier, vol. 239(PA).
    12. Haubensak, Lukas & Strahl, Stephan & Braun, Jochen & Faulwasser, Timm, 2024. "Towards real-time capable optimal control for fuel cell vehicles using hierarchical economic MPC," Applied Energy, Elsevier, vol. 366(C).
    13. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
    14. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    15. Mian, Shahid Hassan & Nazir, Muhammad Saqib & Ahmad, Iftikhar & Khan, Safdar Abbas, 2023. "Optimized nonlinear controller for fuel cell, supercapacitor, battery, hybrid photoelectrochemical and photovoltaic cells based hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    16. Sylvain Rigal & Amine Jaafar & Christophe Turpin & Théophile Hordé & Jean-Baptiste Jollys & Paul Kreczanik, 2024. "Steady-State Voltage Modelling of a HT-PEMFC under Various Operating Conditions," Energies, MDPI, vol. 17(3), pages 1-18, January.
    17. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).
    18. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    19. Zhang, Baodi & Chang, Liang & Teng, Teng & Chen, Qifang & Li, Qiangwei & Cao, Yaoguang & Yang, Shichun & Zhang, Xin, 2024. "Multi-objective optimization with Q-learning for cruise and power allocation control parameters of connected fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 373(C).
    20. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12833-:d:1224477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.