IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics036054422302515x.html
   My bibliography  Save this article

Optimized nonlinear controller for fuel cell, supercapacitor, battery, hybrid photoelectrochemical and photovoltaic cells based hybrid electric vehicles

Author

Listed:
  • Mian, Shahid Hassan
  • Nazir, Muhammad Saqib
  • Ahmad, Iftikhar
  • Khan, Safdar Abbas

Abstract

Hybrid electric vehicles are getting popular due to the depletion of fossil fuel and natural gas reserves. It is important to utilize renewable energy sources to avoid the horrific effects of global warming and greenhouse gas emissions. This study presents an optimized nonlinear controller for a hybrid energy storage system (HESS) of fuel cell, battery, supercapacitor, and hybrid photoelectrochemical and photovoltaic cells (HPEV) based hybrid electric vehicles. All these energy sources are connected to a DC-DC power converter followed by a DC-AC inverter and a motor. Lyapunov based nonlinear controller is proposed to achieve tight DC bus regulation, good tracking of sources current, and global asymptotic stability of the closed loop system. The gain parameters of the proposed nonlinear controller are optimized using the grey wolf optimization (GWO) algorithm for performance improvement. Maximum power point tracking of HPEV is performed using an artificial neural network. Experimental data from the extra-urban driving cycle is used to demonstrate the performance of the proposed optimized HESS using Matlab/Simulink. To validate the performance of the proposed system the simulation results are compared with hardware in the loop experimental results. It can be observed from the simulation results that the proposed GWO optimized nonlinear controller decreases errors, and enhances the performance of the dynamical system.

Suggested Citation

  • Mian, Shahid Hassan & Nazir, Muhammad Saqib & Ahmad, Iftikhar & Khan, Safdar Abbas, 2023. "Optimized nonlinear controller for fuel cell, supercapacitor, battery, hybrid photoelectrochemical and photovoltaic cells based hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302515x
    DOI: 10.1016/j.energy.2023.129121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302515X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhosale, Amit C. & Mane, Swapnil R. & Singdeo, Debanand & Ghosh, Prakash C., 2017. "Modeling and experimental validation of a unitized regenerative fuel cell in electrolysis mode of operation," Energy, Elsevier, vol. 121(C), pages 256-263.
    2. Song, Ziyou & Hou, Jun & Hofmann, Heath & Li, Jianqiu & Ouyang, Minggao, 2017. "Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles," Energy, Elsevier, vol. 122(C), pages 601-612.
    3. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    4. Benmouna, A. & Becherif, M. & Boulon, L. & Dépature, C. & Ramadan, Haitham S., 2021. "Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control," Renewable Energy, Elsevier, vol. 178(C), pages 1291-1302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamboli, Mohaseen S. & Patil, Santosh S. & Lee, Dong-Kyu & Praveen, C.S. & Tamboli, Asiya M. & Sim, Uk & Lee, Kiyoung & Gu, Geun Ho & Park, Chinho, 2024. "Dynamic role of dopant and graphene on BiVO4 photoanode for enhanced photoelectrochemical hydrogen production," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jhoan Alejandro Montenegro-Oviedo & Carlos Andres Ramos-Paja & Martha Lucia Orozco-Gutierrez & Edinson Franco-Mejía & Sergio Ignacio Serna-Garcés, 2023. "Adaptive Controller for Bus Voltage Regulation on a DC Microgrid Using a Sepic/Zeta Battery Charger/Discharger," Mathematics, MDPI, vol. 11(4), pages 1-30, February.
    2. Yongbing Xiang & Xiaomin Yang, 2021. "An ECMS for Multi-Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-21, February.
    3. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    4. Mpho J. Lencwe & Shyama P. Chowdhury & Thomas O. Olwal, 2018. "A Multi-Stage Approach to a Hybrid Lead Acid Battery and Supercapacitor System for Transport Vehicles," Energies, MDPI, vol. 11(11), pages 1-16, October.
    5. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    6. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Jun-bin Wang & Lufei Huang, 2021. "A Game-Theoretic Analytical Approach for Fostering Energy-Saving Innovation in the Electric Vehicle Supply Chain," SAGE Open, , vol. 11(2), pages 21582440211, June.
    8. Pedrayes, Joaquín F. & Melero, Manuel G. & Cano, Jose M. & Norniella, Joaquín G. & Duque, Salvador B. & Rojas, Carlos H. & Orcajo, Gonzalo A., 2021. "Lambert W function based closed-form expressions of supercapacitor electrical variables in constant power applications," Energy, Elsevier, vol. 218(C).
    9. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    10. Kheshti, Mostafa & Zhao, Xiaowei & Liang, Ting & Nie, Binjian & Ding, Yulong & Greaves, Deborah, 2022. "Liquid air energy storage for ancillary services in an integrated hybrid renewable system," Renewable Energy, Elsevier, vol. 199(C), pages 298-307.
    11. Horn, Michael & MacLeod, Jennifer & Liu, Meinan & Webb, Jeremy & Motta, Nunzio, 2019. "Supercapacitors: A new source of power for electric cars?," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 93-103.
    12. Zhou, Jianhao & Liu, Jun & Xue, Yuan & Liao, Yuhui, 2022. "Total travel costs minimization strategy of a dual-stack fuel cell logistics truck enhanced with artificial potential field and deep reinforcement learning," Energy, Elsevier, vol. 239(PA).
    13. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    14. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).
    16. Enyong Xu & Mengcheng Ma & Weiguang Zheng & Qibai Huang, 2023. "An Energy Management Strategy for Fuel-Cell Hybrid Commercial Vehicles Based on Adaptive Model Prediction," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    17. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    18. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
    19. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    20. Asif Afzal & Javed Khan Bhutto & Abdulrahman Alrobaian & Abdul Razak Kaladgi & Sher Afghan Khan, 2021. "Modelling and Computational Experiment to Obtain Optimized Neural Network for Battery Thermal Management Data," Energies, MDPI, vol. 14(21), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302515x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.