IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v45y2015icp343-350.html
   My bibliography  Save this article

Demand response for sustainable energy systems: A review, application and implementation strategy

Author

Listed:
  • Shariatzadeh, Farshid
  • Mandal, Paras
  • Srivastava, Anurag K.

Abstract

The growth of advanced metering infrastructure, enhanced communication infrastructure in power grids, and the ability of end-user consumer to actively participate helps in realizing vision of sustainable energy systems. Demand response (DR) programs are developed in order to deploy this ability and make power grids more efficient, environmental friendly, and reliable. This paper presents a review of DR, existing application and a possible implementation strategy in a smart grid environment. Furthermore, classification and status of DR programs in different U.S. electricity markets have been also discussed.

Suggested Citation

  • Shariatzadeh, Farshid & Mandal, Paras & Srivastava, Anurag K., 2015. "Demand response for sustainable energy systems: A review, application and implementation strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 343-350.
  • Handle: RePEc:eee:rensus:v:45:y:2015:i:c:p:343-350
    DOI: 10.1016/j.rser.2015.01.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115000726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.01.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aubin, Christophe, et al, 1995. "Real-Time Pricing of Electricity for Residential Customers: Econometric Analysis of an Experiment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(S), pages 171-191, Suppl. De.
    2. Walawalkar, Rahul & Fernands, Stephen & Thakur, Netra & Chevva, Konda Reddy, 2010. "Evolution and current status of demand response (DR) in electricity markets: Insights from PJM and NYISO," Energy, Elsevier, vol. 35(4), pages 1553-1560.
    3. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    4. Cappers, Peter & Goldman, Charles & Kathan, David, 2010. "Demand response in U.S. electricity markets: Empirical evidence," Energy, Elsevier, vol. 35(4), pages 1526-1535.
    5. Faruqui, Ahmad & Malko, J.Robert, 1983. "The residential demand for electricity by time-of-use: A survey of twelve experiments with peak load pricing," Energy, Elsevier, vol. 8(10), pages 781-795.
    6. Herter, Karen & McAuliffe, Patrick & Rosenfeld, Arthur, 2007. "An exploratory analysis of California residential customer response to critical peak pricing of electricity," Energy, Elsevier, vol. 32(1), pages 25-34.
    7. Filippini, Massimo, 1995. "Swiss residential demand for electricity by time-of-use," Resource and Energy Economics, Elsevier, vol. 17(3), pages 281-290, November.
    8. Mostafa Baladi, S. & Herriges, Joseph A. & Sweeney, Thomas J., 1998. "Residential response to voluntary time-of-use electricity rates," Resource and Energy Economics, Elsevier, vol. 20(3), pages 225-244, September.
    9. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2012. "Residential demand response behavior analysis based on Monte Carlo simulation: The case of Yinchuan in China," Energy, Elsevier, vol. 47(1), pages 230-236.
    2. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    3. Massimo, Filippini, 2011. "Short- and long-run time-of-use price elasticities in Swiss residential electricity demand," Energy Policy, Elsevier, vol. 39(10), pages 5811-5817, October.
    4. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    5. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    6. Liu, Yingqi, 2017. "Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain," Energy Policy, Elsevier, vol. 100(C), pages 271-282.
    7. Jiang, Bo & Farid, Amro M. & Youcef-Toumi, Kamal, 2015. "Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 156(C), pages 642-654.
    8. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    9. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    10. Heshmati, Almas, 2012. "Survey of Models on Demand, Customer Base-Line and Demand Response and Their Relationships in the Power Market," IZA Discussion Papers 6637, Institute of Labor Economics (IZA).
    11. Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
    12. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    13. Seungmi Lee & Jinho Kim, 2018. "Analytical Assessment for System Peak Reduction by Demand Responsive Resources Considering Their Operational Constraints in Wholesale Electricity Market," Energies, MDPI, vol. 11(12), pages 1-15, November.
    14. Kazutoshi Tsuda & Michinori Uwasu & Keishiro Hara & Yukari Fuchigami, 2017. "Approaches to induce behavioral changes with respect to electricity consumption," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(1), pages 30-38, March.
    15. Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
    16. Partovi, Farzad & Nikzad, Mehdi & Mozafari, Babak & Ranjbar, Ali Mohamad, 2011. "A stochastic security approach to energy and spinning reserve scheduling considering demand response program," Energy, Elsevier, vol. 36(5), pages 3130-3137.
    17. Cosmo, Valeria Di & O’Hora, Denis, 2017. "Nudging electricity consumption using TOU pricing and feedback: evidence from Irish households," Journal of Economic Psychology, Elsevier, vol. 61(C), pages 1-14.
    18. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    19. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    20. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:45:y:2015:i:c:p:343-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.