IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p12002-d1210678.html
   My bibliography  Save this article

Research on Design and Optimization of Large Metal Bipolar Plate Sealing for Proton Exchange Membrane Fuel Cells

Author

Listed:
  • Jinghui Zhao

    (School of Automotive Studies, Tongji University, No. 4800 Caoan Highway, Shanghai 201804, China
    Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
    AT&M Environmental Engineering Technology Co., Ltd., No. 76 Xueyuan South Road, Haidian District, Beijing 100081, China)

  • Huijin Guo

    (School of Automotive Studies, Tongji University, No. 4800 Caoan Highway, Shanghai 201804, China
    Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
    AT&M Environmental Engineering Technology Co., Ltd., No. 76 Xueyuan South Road, Haidian District, Beijing 100081, China)

  • Shaobo Ping

    (AT&M Environmental Engineering Technology Co., Ltd., No. 76 Xueyuan South Road, Haidian District, Beijing 100081, China
    Technology Innovation Center, Central Iron and Steel Research Institute Group, Beijing 100081, China)

  • Zimeng Guo

    (AT&M Environmental Engineering Technology Co., Ltd., No. 76 Xueyuan South Road, Haidian District, Beijing 100081, China)

  • Weikang Lin

    (School of Automotive Studies, Tongji University, No. 4800 Caoan Highway, Shanghai 201804, China
    Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China)

  • Yanbo Yang

    (School of Automotive Studies, Tongji University, No. 4800 Caoan Highway, Shanghai 201804, China
    Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China)

  • Wen Shi

    (AT&M Environmental Engineering Technology Co., Ltd., No. 76 Xueyuan South Road, Haidian District, Beijing 100081, China)

  • Zixi Wang

    (Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China)

  • Tiancai Ma

    (School of Automotive Studies, Tongji University, No. 4800 Caoan Highway, Shanghai 201804, China
    Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China)

Abstract

The sealing system, as the most important load-bearing component, is a critical part of the stack assembly in a proton exchange membrane fuel cell (PEMFC). Currently, flat or single-peak sealing gaskets are commonly used for large metal bipolar plate sealing, which can easily cause problems such as significant internal stress and distortion displacement. In order to solve this problem, an innovative double-peak sealing gasket structure is proposed. Based on the Mooney–Rivlin constitutive model, the impact of the sealing material hardness, friction coefficient, and compression ratio on the sealing performance are investigated. Meanwhile, the double-peak seal is fabricated and assembled into a single fuel cell for testing. The results show that the sealing performance of a double-peak sealing gasket with extended wings has been optimized, and the maximum contact pressure on the upper and lower contact surfaces is 1.2 MPa and 0.67 MPa, respectively, which is greater than the given air pressure of 0.1 MPa. And the sealing effect is optimal with a 45 Shore A hardness rubber, a friction coefficient of 0.05, and an initial compression ratio of 35%. The simulation and experimental sealing performance of the sealing gasket under different compression ratios remain similar.

Suggested Citation

  • Jinghui Zhao & Huijin Guo & Shaobo Ping & Zimeng Guo & Weikang Lin & Yanbo Yang & Wen Shi & Zixi Wang & Tiancai Ma, 2023. "Research on Design and Optimization of Large Metal Bipolar Plate Sealing for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12002-:d:1210678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/12002/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/12002/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xing, Shuang & Zhao, Chen & Liu, Wei & Zou, Jiexin & Chen, Ming & Wang, Haijiang, 2021. "Effects of bolt torque and gasket geometric parameters on open-cathode polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 303(C).
    2. Daud, W.R.W. & Rosli, R.E. & Majlan, E.H. & Hamid, S.A.A. & Mohamed, R. & Husaini, T., 2017. "PEM fuel cell system control: A review," Renewable Energy, Elsevier, vol. 113(C), pages 620-638.
    3. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    2. Komova, O.V. & Simagina, V.I. & Butenko, V.R. & Odegova, G.V. & Bulavchenko, O.A. & Nikolaeva, O.A. & Ozerova, A.M. & Lipatnikova, I.L. & Tayban, E.S. & Mukha, S.A. & Netskina, O.V., 2022. "Dehydrogenation of ammonia borane recrystallized by different techniques," Renewable Energy, Elsevier, vol. 184(C), pages 460-472.
    3. Aihua Tang & Lin Yang & Tao Zeng & Quanqing Yu, 2022. "Cascade Control Method of Sliding Mode and PID for PEMFC Air Supply System," Energies, MDPI, vol. 16(1), pages 1-13, December.
    4. Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2021. "Model-Predictive-Control-Based Reference Governor for Fuel Cells in Automotive Application Compared with Performance from a Real Vehicle," Energies, MDPI, vol. 14(8), pages 1-17, April.
    5. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    6. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    8. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    9. Luo, Lizhong & Jian, Qifei & Huang, Bi & Huang, Zipeng & Zhao, Jing & Cao, Songyang, 2019. "Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 143(C), pages 1067-1078.
    10. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).
    11. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    12. Tomislav Capuder & Bojana Barać & Matija Kostelac & Matej Krpan, 2023. "Three-Stage Modeling Framework for Analyzing Islanding Capabilities of Decarbonized Energy Communities," Energies, MDPI, vol. 16(11), pages 1-24, May.
    13. Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.
    14. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    15. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    16. Danqi Su & Jiayang Zheng & Junjie Ma & Zizhe Dong & Zhangjie Chen & Yanzhou Qin, 2023. "Application of Machine Learning in Fuel Cell Research," Energies, MDPI, vol. 16(11), pages 1-32, May.
    17. Latif, Hamid & Wasif, Danish & Rasheed, Saba & Sattar, Abdul & Rafique, M. Shahid & Anwar, Abdul Waheed & Zaheer, S. & Shabbir, Syeda Ammara & Imtiaz, Ayesha & Qutab, Mehwish & Usman, Arslan, 2020. "Gold nanoparticles mixed multiwall carbon nanotubes, supported on graphene nano-ribbons (Au-NT-G) as an efficient reduction electrode for Polymer Electrolyte Membrane fuel cells (PEMFC)," Renewable Energy, Elsevier, vol. 154(C), pages 767-773.
    18. Peng, Fei & Zhao, Yuanzhe & Chen, Ting & Zhang, Xuexia & Chen, Weirong & Zhou, Donghua & Li, Qi, 2018. "Development of robust suboptimal real-time power sharing strategy for modern fuel cell based hybrid tramways considering operational uncertainties and performance degradation," Applied Energy, Elsevier, vol. 226(C), pages 503-521.
    19. Yin, Cong & Gao, Yan & Li, Ting & Xie, Guangyou & Li, Kai & Tang, Hao, 2020. "Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model," Renewable Energy, Elsevier, vol. 147(P1), pages 650-662.
    20. Adam Polak, 2020. "Simulation of Fuzzy Control of Oxygen Flow in PEM Fuel Cells," Energies, MDPI, vol. 13(9), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12002-:d:1210678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.