IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11912-d1209354.html
   My bibliography  Save this article

Hybrid Particle Swarm and Gravitational Search Algorithm-Based Optimal Fractional Order PID Control Scheme for Performance Enhancement of Offshore Wind Farms

Author

Listed:
  • Nour A. Mohamed

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Hany M. Hasanien

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
    Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Abdulaziz Alkuhayli

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Tlenshiyeva Akmaral

    (Department of Electrical Engineering, University of Jaén, 23700 Linares, Spain)

  • Francisco Jurado

    (Department of Electrical Engineering, University of Jaén, 23700 Linares, Spain)

  • Ahmed O. Badr

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

Abstract

This article aimed to introduce a novel application of a hybrid particle swarm optimizer and gravitational search algorithm (HPSOGSA) that can be used for optimal control of offshore wind farms’ voltage source converter connected to HVDC transmission lines. Specifically, the algorithm was used to design fractional-order proportional-integral-derivative (FOPID) controller parameters designed to minimize the system’s objective function based on an integral squared error. The proposed FOPID controller was applied to improve offshore wind farm performance under different transient conditions, and its results were compared with a PI controller that was designed using a genetic algorithm and grey wolf optimization algorithm. The fault ride-through capabilities of the proposed control strategy were also evaluated. The findings suggest that the HPSOGSA-based FOPID controller outperformed the other two methods, significantly enhancing offshore wind farm operations. The control strategy was thoroughly tested using MATLAB/Simulink under various operating scenarios.

Suggested Citation

  • Nour A. Mohamed & Hany M. Hasanien & Abdulaziz Alkuhayli & Tlenshiyeva Akmaral & Francisco Jurado & Ahmed O. Badr, 2023. "Hybrid Particle Swarm and Gravitational Search Algorithm-Based Optimal Fractional Order PID Control Scheme for Performance Enhancement of Offshore Wind Farms," Sustainability, MDPI, vol. 15(15), pages 1-25, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11912-:d:1209354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.
    2. Rui Zeng & Yizhen Wang, 2022. "Improved Frequency Control Strategy for Offshore Wind Farm Integration via VSC-HVDC," Energies, MDPI, vol. 15(17), pages 1-11, August.
    3. Ahmed M. Hussien & Jonghoon Kim & Abdulaziz Alkuhayli & Mohammed Alharbi & Hany M. Hasanien & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado, 2022. "Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aminu Babangida & Péter Tamás Szemes, 2024. "Dynamic Modeling and Control Strategy Optimization of a Volkswagen Crafter Hybrid Electrified Powertrain," Energies, MDPI, vol. 17(18), pages 1-38, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    2. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    3. Inage, Sin-ichi & Ohgi, Shouki & Takahashi, Yoshinori, 2024. "Proposal and validation of an optimization method using Monte Carlo method for multi-objective functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 146-157.
    4. Kumar, Rajesh & Agarwala, Arun, 2016. "Renewable energy technology diffusion model for techno-economics feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1515-1524.
    5. Jiang, Shi-Jie & Chu, Shu-Chuan & Zou, Fu-Min & Shan, Jie & Zheng, Shi-Guang & Pan, Jeng-Shyang, 2023. "A parallel Archimedes optimization algorithm based on Taguchi method for application in the control of variable pitch wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 306-327.
    6. Liang Cui & Ye Xu & Ling Xu & Guohe Huang, 2021. "Wind Farm Location Special Optimization Based on Grid GIS and Choquet Fuzzy Integral Method in Dalian City, China," Energies, MDPI, vol. 14(9), pages 1-13, April.
    7. Chi Hsiang Lin, 2022. "The Impact of Integration of the VSC-HVDC Connected Offshore Wind Farm on Torsional Vibrations of Steam Turbine Generators," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    8. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    9. Mohammed Yousri Silaa & Oscar Barambones & José Antonio Cortajarena & Patxi Alkorta & Aissa Bencherif, 2023. "PEMFC Current Control Using a Novel Compound Controller Enhanced by the Black Widow Algorithm: A Comprehensive Simulation Study," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    10. Waldemar Niewiadomski & Aleksandra Baczyńska, 2021. "Advanced Flexibility Market for System Services Based on TSO–DSO Coordination and Usage of Distributed Resources," Energies, MDPI, vol. 14(17), pages 1-31, September.
    11. Gionfra, Nicolò & Sandou, Guillaume & Siguerdidjane, Houria & Faille, Damien & Loevenbruck, Philippe, 2019. "Wind farm distributed PSO-based control for constrained power generation maximization," Renewable Energy, Elsevier, vol. 133(C), pages 103-117.
    12. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    13. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    14. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    15. Ahmed Sulaiman Alsafran, 2023. "A Feasibility Study of Implementing IEEE 1547 and IEEE 2030 Standards for Microgrid in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(4), pages 1-15, February.
    16. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    17. Wędzik, Andrzej & Siewierski, Tomasz & Szypowski, Michał, 2016. "A new method for simultaneous optimizing of wind farm’s network layout and cable cross-sections by MILP optimization," Applied Energy, Elsevier, vol. 182(C), pages 525-538.
    18. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
    19. María Pérez-Ortiz & Silvia Jiménez-Fernández & Pedro A. Gutiérrez & Enrique Alexandre & César Hervás-Martínez & Sancho Salcedo-Sanz, 2016. "A Review of Classification Problems and Algorithms in Renewable Energy Applications," Energies, MDPI, vol. 9(8), pages 1-27, August.
    20. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiroz & Bargos, Danubia Caporusso & Neto, Morun Bernardino & Pardal, Paula Cristiane Pinto Mesquita, 2016. "Location problem method applied to sugar and ethanol mills location optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 274-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11912-:d:1209354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.