IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6363-d903167.html
   My bibliography  Save this article

Improved Frequency Control Strategy for Offshore Wind Farm Integration via VSC-HVDC

Author

Listed:
  • Rui Zeng

    (Key Laboratory of Smart Grid, Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Yizhen Wang

    (Key Laboratory of Smart Grid, Ministry of Education, Tianjin University, Tianjin 300072, China)

Abstract

Voltage source converter based high voltage DC system (VSC-HVDC) has become a very promising solution to integrate offshore wind farm. However, the equivalent inertia of the modern power system with large renewable energy integration becomes small, which will arouse some frequency stability problems. To tackle this problem, this paper proposes an improved frequency regulation strategy for VSC-HVDC integrated offshore wind farm. Firstly, in the frequency decrease stage, the rotor kinetic energy of wind turbines (WTs) is used to suppress the decrease of the frequency, and the control parameters are determined to make full use of the mechanical power and rotor kinetic energy of WTs, the frequency nadir is improved. Secondly, in the rotor speed recovery stage, the DC capacitors of VSC-HVDC are used to release power to compensate the deficiency value of wind farm output power and avoid the secondary frequency drop (SFD) problem. Lastly, the simulation is conducted in PSCAD/EMTDC to validate the effectiveness of the proposed coordinated frequency control strategy.

Suggested Citation

  • Rui Zeng & Yizhen Wang, 2022. "Improved Frequency Control Strategy for Offshore Wind Farm Integration via VSC-HVDC," Energies, MDPI, vol. 15(17), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6363-:d:903167
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6363/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nour A. Mohamed & Hany M. Hasanien & Abdulaziz Alkuhayli & Tlenshiyeva Akmaral & Francisco Jurado & Ahmed O. Badr, 2023. "Hybrid Particle Swarm and Gravitational Search Algorithm-Based Optimal Fractional Order PID Control Scheme for Performance Enhancement of Offshore Wind Farms," Sustainability, MDPI, vol. 15(15), pages 1-25, August.
    2. Chi Hsiang Lin, 2022. "The Impact of Integration of the VSC-HVDC Connected Offshore Wind Farm on Torsional Vibrations of Steam Turbine Generators," Sustainability, MDPI, vol. 15(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6363-:d:903167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.